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1. Introduction

Graphs are historically and generally considered as geometri-
cal objects. In spite of this, they can be represented in many dif-
ferent ways: lists of edges, adjacency matrixes or by a lot of other
different structures [2]. The reality represented by graphs can be
anything between chemical formulae, mechanical system, map
structure and/or computer processes. Graphs are visually impres-
sive and can easily introduce the observer into the core of the
problem.

The paper will introduce the necessary base of graph theory
to the readers and describe the inverse matrix acquisition based
on graph theory. This means that neither numerical nor analytical
method is used [3, 4]. This new approach can both spare compu-
tational time (for certain types of problems) and lead to solution
where numerical or analytical methods cannot be used. In addi-
tion, the presented technology can be implemented into the cores
of numerical (or analytical) tools to obtain the required solution
of the matrix formulated problem. The paper is based on latest
research of authors presented in [5] and completed with descrip-
tion of background theory and presenting new and completed
examples.

The paper describes the principles of topological description
of electric circuits based on graphs theory. The electric circuit,
described by its topology, could easily be represented by graphs.
The equivalent circuit of an asynchronous rotary machine can be
presented as an important and well-known example (Fig. 1). The
parameters from Fig. 1 are generally known and it is not necessary

to describe them in this paper. Important is that the edges in Fig.
1 are easy to identify. The result of this assignment can be seen in
Fig. 2. These steps might be successfully used for almost every
rotary or linear [6] machinery properties analysis.

The utilization of different graph types in electric circuits’
analysis is not a new idea at all. There are technologies (based
either on oriented graphs or directly describing the topological
structure of the circuit) used parallel to numerical or analytical
techniques [7]. One of the most referred are signal graphs [5].
Signal Graphs are mapping the flow of electrical signals through
the given circuit. They are able to interpret the graphical represen-
tation of Kirchhoff’s Laws; nevertheless, they are not able to follow
the topology of the circuit. The signal graph, following the given
rules, can be simplified together with a change of individual legs
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Fig. 1 Equivalent circuit of an asynchronous machine
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transformation. Finally, the algebraic expressions are obtained from
the graph structure. The investigated parameters can easily be eval-
uated according to a numerical (or analytical – where possible)
solution of equation sets representing Kirchhoff’s laws. 

2. Topological graphs

In contrast to oriented signal graphs, this type of graphical
structure represents directly the topological structure of the circuit.
The vertices are the nodes and the edges are the arms (Fig. 1).
The topological graph can be used for analytical representation of
a circuit’s topological structure in the form of matrix. The matrixes
obtained from these are known as Incidence topological matrixes.

To be able to build the topological graph of the circuit, it is
necessary to replace the dipole components of the circuit with their
representative – edge of the graph. The most important term in
graph theory is the graph tree. This definition covers such a sub-
graph, which contains all of the vertices, but no closed cycle. The
edges of the graph forming the tree are called arms, while the
complementary edges are called chords.

The graphical connection can be transformed into an algebraic
representation with several types of topological matrixes.

3. Incidence matrix

The adjacency matrix of oriented graph with vertices v1, …, vn

is a square matrix A(G) � (aij) of n-th degree, where aij is equal to
number of edges between vertices vi and vj. The incidence matrix
M � (mij) is a matrix with size of p 	 q, where p represents the
number of vertices and j number of edges. The value of mij is equal
either to 1 or 0 – based on incidence of vertex i and edge j. It is
also important to define the diagonal matrix D mij (dij), where value
of dij is equal to degree of vertex i. The relation between the adja-
cency matrix and incidence matrix is as presented: 

A � D � MMT (1)

The concrete construction of the incidence matrix can be illus-
trated at an example presented in Fig. 1 and its graph representa-

tion (Fig. 2). As can be seen in Fig. 2, there is either one or none
connection (edge) between the vertices. The rows of the matrix
are based on vertices and the columns on edges of the graph. As
described above, each row i of this matrix express which edges are
connected to vertex j. For example, edge 1 leaves from vertex 1 so
m11 is equal to �1. The same goes for edge 2 and vertex 1: m12 is
equal to �1 again. Edges 3, 4 and 5 have no connection (incidence)
to vertex No. 1, so their values are equal to 0. The edge 2 arrives
to vertex 2: the value of m22 is equal to 1. Based on these steps the
following matrix is obtained:

(2)

It is generally known that any row in the incidence matrix is
a linear combination of the rest of the rows. This means that one
of the rows contains redundant information and it is possible to
leave it out of the matrix. It is typical to quit the row correspond-
ing to reference (grounded) node, e.g. the fourth row from the
above presented incidence matrix. The obtained type of matrix is
called node matrix and is labeled as R. For the case presented in
Fig. 2 it is equal to:

(3)

When assigning every nth graph vertex to potential ϕn (relative
to reference node), each single component ank of matrix R can be
considered as an expression of potential ϕn influence on current
flowing through edge k. When the voltages on the edges are rep-
resented in the form of column vector u and the potentials of ver-
tices in the form of column vector ϕ, then the voltage of edges can
be calculated as:

u � RT ϕ (4)

The matrix R and the column vector u can be separated into
parts Rv , Rt and uv , ut . These components correspond to tree arms
and chords. The dependence between the potential of each vertex
and the voltage of each edge can be obtained from (5).

(5)

More detailed description of connection to electric circuits pre-
sented by the authors can be seen, e.g. in [5].

4. Inverse matrix by graph construction

There are numerous methods used to obtain the inverse matrix.
One of them is based on the graph construction. The method is
described in a simple example with alternating paths (the term
alternative path covers those paths where the edges of 1-factor and
edges out of 1-factor are alternating, and it begins and ends with
edge out of 1-factor [4]). The matrix A is adjacent to graph G. There
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Fig. 2 Edges of the circuit
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also is an inverse graph G�1 with its adjacent matrix A(G�1). The
matrix obtained this way is an inverse matrix to the original one.
Graph G is understood as a finite non-oriented graph without loops
with the possibility of multiple edges [8]. The labeling of graph G
is represented as l:E(G) → R, where R is the set of real numbers.
When labeling l on graph G is available, the definition of adjacent
matrix A � (aij) to graph G is a square matrix of order n, where:

(6)

Graph G is called bipartite graph (or simply bigraph) when it
does not contain a circle of odd length. The non-empty sets R �
� V(G) constitute the bipartition to bigraph G � (V(G), E(G))
when R � C � � and R � C � V(G) and none of two vertices
from R (or C) are connected with an edge. When the bipartition
(R, C) of bigraph G is given, the R 	 C of matrix BRC(G) � bij can
be defined (�R� means cardinality of set R) as follows:

(7)

This matrix is called bipartite matrix of graph G. It is obvious
that:

(8)

Additionally, if BRC(G) is a regular square matrix then also
A(G) is regular. Graph G contains 1-factor (perfect matching) if
a factor of the graph with each vertex with a degree of 1 exists.
Symbol M(G) or (M) will be assigned to 1-factor of graph G (if
included in) and symbol G/M to the graph obtained from G by
contraction on edges of 1-factor [9]. The path with n vertices is
labeled as Pn . The path P in G of length k is a subgraph of G iso-
morphic with Pk�1. Let G contain 1-factor M(G). The path P is
in G alternating in respect of M(G) if one of the following criteria
is fulfilled:
� P is of length 1 (i. e. edge),
� from each pair of adjacent edges in P there is just one belong-

ing to M(G) and P begins and ends with an edge not belonging
to M(G).

The P is even (odd) alternating path when P contains even
(odd) number of edges out of M(G). When P is only an edge, it will
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be considered even (odd) alternating path if it belongs (does not
belong) to M(G).

Let G be a bigraph without multiple edges with unique 1-factor
M(G). Nodes u and v are arbitrary vertices in G. Then the number
of even (odd) alternating paths connecting the nodes u and v can
be specified as p�(u,v) (p�(u,v)).

Let G be a bigraph with unique 1-factor M(G). Then the
labeled bigraph G�1 with label l : E(G) → Z can be obtained as
follows [1, 10–12]:
� V(G�1) � V(G)
� let vertices u,v � V(G�1); then the edge (u,v) � V(G�1) if and

only if p�(u,v) 
 p�(u,v) and l(u,v) � p�(u,v) � p�(u,v).

5. Examples

A simple general example to illustrate the described theory has
been presented in [5]. A bipartite matrix B(G) is defined to sim-
plify the transcription.

It is obvious that the matrix B(G) is square and it is regular as
well. The concrete example can be transformed, according to the
rules described above, to the graph structure presented in Fig. 4. The
description of vertices corresponds to 1-factor. Since the 1-factor
and the alternating paths are very important in the process, it is
recommended to mark these components. So, the edges of 1-factor
are displayed bold in Figs. 4 and 5. The bipartite matrix of graph G
is:

(9)

The practical realization of defined rules to follow is very
simple. Point No. 1 from Fig. 4 (represents the input to the system)
is connected only to the resistor R1 (Fig. 3) at the beginning part
of the scheme (point 1� in Fig. 4). Thus the value B11 is equal to
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Fig. 3 Example of the electric circuit scheme



121C O M M U N I C A T I O N S    2 A / 2 0 1 3   �

1, the other values in the first row are equal to 0. On the other
hand, the parallel connection of resistor R2 and capacitor C1 (rep-
resented by point No. 2 in Fig. 4), has an association to points
No. 1� and 2. So the relevant values in B(G) are set to 1 while the
others in the second row are set to 0. This process leads to con-
struction of complete matrix B(G), finished by line No. 8, where
R10 (point No. 8 in Fig. 4) has an association to points No. 4�, 7�
and 8�.

When constituting the graph G�1 (with bipartite matrix B�1(G)
– an inverse matrix to B(G)) the below described steps have to be
followed:

1, the edges of 1-factor are put into the graph G�1 and a value of
1 is assigned to them (Fig. 4).

2, the other edges are included into the graph structure follow-
ing the algorithm:
– if between two vertices u� and v an alternative path(s) exists,

then the number of even p�(u�,v) and odd p�(u�,v) occur-
rences have to be counted. A new edge will be added in case
when p�(u�,v) 
 p�(u�,v) and its value (label) is l(u�,v) �
� p�(u�,v) � p�(u�,v),

– if not, the edge is not added.

The even alternative path has an even number of edges out of
1-factor, while odd has an odd number of those edges. The graph
constructed following these rules can be seen in Fig. 5. The cor-
responding B(G�1) is:

(10)

The practical realization of the above described steps is again
very easy. For instance, when analyzing the existence of alterna-
tive paths to point No. 4, only two of them exist (Fig. 5): 
– from 2� – this includes 3 occurrences, the final value assigned

to this path is: 1, and
– from 1� – this includes 5 occurrences, the final value assigned

to this path is: �1.
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Together with paths:
– from 3� – assigned as �1, and
– from 4� – assigned as 1

the fourth row of B(G�1) is set to (�1, 1, �1, 1, 0, 0, 0, 0).

The alternative paths illustrated in Fig. 5 represent all available
alternatives. The second half of the paths can be easily constructed
based on problem symmetry; although this cannot be generalized.
Nevertheless, one important remark has to be made in this point:
the alternative paths coming to point No. 8 are as illustrated in
Fig 5, but because of the mentioned symmetry case there are two
alternative paths from 1� available. Thus the value of B81 is equal
to �2!

Finally, it can easily be proven that the bipartite matrix of
graph G�1 is an inverse matrix to B(G):

B�1(G) � B(G�1) (11)

The procedure for adjacent matrix and its inverse matrix estab-
lishment is presented in [5].

At the conclusion of this chapter it has to be written that
a fully new principle for obtaining the adjacent matrix has been
successfully tested. The bipartite matrix (as a base of the adjacent
matrix) is a fundamental component for (almost) any following
both numerical and analytical analysis of (but not only) electric
circuits. Even though this, it also has to be mentioned that there
are certain issues where this technology cannot be applied or where
the computational complexity of this kind of solution does not
allow its successful implementation.

6. Conclusion

This paper is based on the authors’ results presented in [5]
completed with the latest knowledge and authors’ experience.
According to these, the base of any numerical method used in tech-
nical sciences to analyze and simulate the technical processes is
constituted on matrix calculus [1]. This is especially clear for elec-
tric circuits used in electrical engineering and power electronics
[13-16], where the physical reality and description of the circuit is
transformed into a matrix form. The numerical methods in these

R E V I E W

Fig. 4 Structure of graph G

Fig. 5 Paths in G
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cases are based on inverse matrix calculus. This can be done either
in an algebraic or numerical way.

The presented paper discovers a purely new technique to obtain
the inverse matrix necessary to construct the sets of equations. This
technique is based on graph theory and represents a unique and
new approach to numerical solutions of electrical problems. Gen-
erally, according to the presented technology, only the number of
components is important for building the adjacent matrix. The
concrete value of components is not important for this step of the
solution and may vary from element to element.

The method itself had been introduced in the paper. The pos-
sible way of electric circuit representation by graph structures had
been presented, as well as the matrix construction based on the
obtained graph. The mathematical background of inverse matrix
by graph construction had been presented, including the alternat-
ing path influence on matrix system construction.

Compared to the authors’ results presented in [5] the back-
ground theory was elaborated in a more precise way. The practical
example (asynchronous machine) were chosen to demonstrate the
theory and possible application of graphs. More complex example
is presented here by the authors and a simple solution based on
bipartite matrix is offered. This example (Fig. 3) can be considered
as an analogue filter used as a basic building block in signal pro-
cessing. The topology of the filter was chosen to demonstrate the
mathematical concept of the designed procedure. To be able to
follow the procedures a detailed description of the most important
steps is also presented. 

The advantages of the presented unique method can be sum-
marized as the following:

� the inverse matrix can be obtained without using either algebraic
or numerical technique; the necessity of algebraic description
of the task requiring the computation of inverse matrix is com-
pletely eliminated,

� graphical (clear) visibility,
� compared to [17] an alternating paths are taken into account,
� a simplified solution based on bipartite matrix is suggested.

The presented method has also several disadvantages. These
might sometimes also lead to unsuccessful application of the pre-
sented methods:
� necessity of graph scanning and finding the alternating path(s),

including the finding the 1-factor,
� algorithm is valid for bipartite graph structures only.

On the other hand, there is a computational complexity of the
method. As has been mentioned above, the method based on alter-
nating paths is a completely new method. The searching of 1-factor
is sufficiently described in the literature, so it is not presented in
the paper. The authors describe the principles and offer an example
– the question of computational complexity is outside the scope
of this paper. Nevertheless, it is clear that the presented method
can be successfully used mostly with “sparse” graphs with limited
number of edges. 
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