
167C O M M U N I C A T I O N S 2 A / 2 0 1 3 �

R E V I E W

1. Introduction

The basic elements of turbo codes are convolutional codes [1,
2] and decoding algorithms that use soft input and soft output [3,
4, 5, 6]. The input bit sequence is encoded by two encoders,
between which is stored interleaver to ensure that the encoded
sequences are mutually independent. RSC (Recursive Systematic
Convolutional) encoders [1, 2] are often used where each RSC
encoder produces a systematic output, which is equivalent to input
information, and produces parity bits. Both parity sequences can
be punctured before they are transferred with systematic bits to
the decoder. Via puncturing it is possible to reduce the number of
parity bits to one half and thereby also increase the information
rate to 1/2.

For decoding, special algorithms must be used which use soft
input and soft output [4, 5, 6]. These soft inputs and outputs do
not determine only whether the decoded bit has the logical value
0 or 1 but the likelihood ratio which determines the probability of
whether the bit was correctly decoded. The turbo decoder operates
iteratively. The first iteration of the first decoder gives an estimate
of the original data sequence, based on the soft output channel. It
also provides an extrinsic output. Extrinsic output for a given bit
is not dependent on the value of the transmission channel for this
bit but on the information for the surrounding bits. This extrinsic
output from the first decoder is used as a-priori information for the
second decoder together with input information from the channel.

The second decoder will give us again extrinsic information
and soft output. In the second iteration the extrinsic information
from the second decoder in the first iteration is used as a-priori
information for the first decoder. Thus the decoder achieves a more
accurate estimate of the decoded bits than was the case in the first
iteration. This cycle is continuously repeated. In each iteration of
the two decoders soft output and extrinsic information are calcu-
lated based on the input sequence and a-priori information obtained

from extrinsic information of the previous decoder. After each
iteration, the BER (Bit Error Rate) decreases.

2. Turbo encoder

The block diagram of turbo encoder [5, 7] is shown in Fig. 1.
Two identical encoders are used here, usually RSC, which are sep-
arated by interleaver. It is possible to use a structure with more
than two encoders, but in this chapter we will deal with the clas-
sical structure of two RSC encoders [1, 2].

The input bit sequence is fed to the input of the first encoder
where it is encoded. The output of the first encoder is formed by
systematic and parity bits. The input bits for the second encoder
are interleaved and encoded in the second encoder. The input bits
for the second encoder thus become independent of the input bits
of the first encoder. Typically, pseudo-random or block interleaver
is used. The second encoder produces parity bits only. The output
from the two encoders is punctured and then multiplexed. Usually
both RSC encoders have an information rate of 1/2 and give one
systematic and one parity bit for each input bit. This means that
the turbo encoder output sequence contains for each input bit one
systematic and two parity bits, i.e. y1s�, y1

1l�, y2
1l�, y2s�, y1

2l�, y2
2l�, …,

PERFORMANCE ANALYSIS OF TURBO CODESPERFORMANCE ANALYSIS OF TURBO CODES

Jakub Sedy – Pavel Silhavy – Ondrej Krajsa – Ondrej Hrouza *

The article focuses on the performance analyses of Turbo Codes. These codes belong to the group of error correction codes. By their use,
it is possible to achieve high system performance. The performance analysis is based on simulations for different code parameters that affect
the code gain, bit error rate and computational complexity. Furthermore, it presents the basic structure of the encoder and decoder and the
principle of encoding and decoding, which uses the Viterbi algorithm with soft input and soft output.

Keywords: Turbo encoder, turbo decoder, iterative decoding, SOVA, BER.

* Jakub Sedy, Pavel Silhavy, Ondrej Krajsa, Ondrej Hrouza
Faculty of Electrical Engineering and Communication, Brno University of Technology, Czech Republic, E-mail: jakub.sedy@phd.feec.vutbr.cz

Fig. 1 Turbo encoder block diagram

https://doi.org/10.26552/com.C.2013.2A.167-173

168 � C O M M U N I C A T I O N S 2 A / 2 0 1 3

R E V I E W

yks�, y
1
kl�, y

2
kl�. For this output sequence the turbo encoder has an

information rate of 1/3. For the total information rate to be 1/2,
the output bits from the turbo encoder must be punctured. The
output sequence is punctured so that all the systematic bits are
preserved and only the parity bits are punctured. Puncturing of
the systematic bits will degrade the code performance. After punc-
turing and multiplexing the turbo encoder output sequence xkl

would be y1s�, y
1
1l�, y

2
1l�, y2s�, y

1
2l�, y

2
2l�, …, yks�, y

1
k+1s�, y

2
k+1l�.

3. Turbo decoder

A. Soft output Viterbi algorithm
The turbo decoder uses the Viterbi algorithm which is referred

to as the SOVA (Soft-Output Viterbi Algorithm [3, 4, 5]. For decod-
ing turbo codes, this algorithm has two modifications. The first
modification adapts the path metric so that it takes into account
a-priori information when selecting the maximum likelihood paths
in the trellis diagram. The second modification of the algorithm
consists in soft output in the form of a-posteriori LLR (Log Like-
lihood Ratio) L (uk
 y_) for each decoded bit.

The first modification considers the state sequence s_s
k which

gives the states along the surviving paths at the state Sk � s at stage
k in the trellis diagram. The metric should be easy to compute via
the recursive way where we go from stage k – 1 to the kth stage in
the trellis diagram. A suitable metric for the path s_

s
k is defined as

[4, 5]:

(1)

where M(s̀_s
k) is the metric of surviving path through the state Sk�1

at stage k�1 in the trellis diagram, uk is the encoder input bit, xkl

is the transmitted channel sequence (output from encoder) associ-
ated with a given transition, and ykl is the received sequence from
the transmission channel for that transition. Using the transmis-
sion channel with BPSK (Binary Phase Shift Keying) modulation
and AWGN (Additive White Gaussian Noise), the channel relia-
bility Lc is defined as follows [5]:

, (2)

where Eb is the transmitted energy per bit, α is the fading ampli-
tude, and σ is the noise variance.

Now we will discuss the second modification of the algorithm
which is the soft output. In a binary trellis diagram there will be two
paths reaching the state Sk � s at the stage k. The modified Viterbi
algorithm takes a-priori information, calculates the metric of these
two paths according to Equation (1) and discards the path with
a lower metric. When both paths s_s

k and ŝ_s
k reaching state Sk have

the metric M(s_s
k) and M(ŝ_s

k), respectively and the path with the
higher metric s_s

k is selected as surviving, we define the difference
metric Δs

k of these paths as [4, 5]:

, (3)M s M s 0k
s

k
s

k
s $D = - t_ _i i

L
E

4
2

c
b

2
a

v
=

M s s uM u L
L

y x
2

1

2k
s kk

s k
c

kl
t

n

kl1
1

= + +
-

=

l
}_ _ _i i i /

where M(s_s
k) is the metric for the surviving path, and M(ŝ_s

k) is the
metric for the discarded path.

When we reach the end of the trellis diagram and find the ML
(Maximum Likelihood) path, it is necessary to find the LLR. This
determines the reliability of deciding on the bits around the ML
path. The Viterbi algorithm shows that all the surviving paths at the
stage in the trellis diagram come from the same path a few steps
before this stage. This previous stage may attain δ transitions before
the stage k, where δ is usually set to five times the constraint length
of the convolutional code. Therefore, the bit value uk associated
with the transition from the state Sk�1 � s̀ to the state Sk � s on
the ML path may be different when the Viterbi algorithm selects
one path merged with the ML path instead of the ML path after
the δ transitions, i.e. k � δ stage in the trellis diagram. If the algo-
rithm selects one of the paths merged with the ML path, it will not
affect the value uk, because this path will differ from the ML path
from the transition Sk�1 � s̀ to Sk � s. When we calculate the
LLR for the bit uk, SOVA has to take into account the probability
of paths merging with the ML path at the stage k to stage k � δ.
By comparing the differences in the metric Δsi

i for all states si

along the ML path from the state i � k to i � k � δ. This LLR is
defined as [4, 5]:

, (4)

where uk is the bit value of the ML path, and ui
k is the value of the

bit of the path that merged with the ML path and was discarded
in the state i. The minimization in Equation (4) is only used for
paths merging with the ML path which gives a different value for
the bit uk when this path is selected as the surviving path. The
paths that gave the same value uk as the ML path do not affect the
decision.

B. Implementation of the SOVA
SOVA is implemented as follows. In every state at every stage

in the trellis diagram the metric M(s_s
k) is calculated for the two

paths merging into the state using Equation (1). The path with the
higher metric is chosen as the surviving for this state and the
metric indicator stored as the Viterbi algorithm does it. However,
in order to provide reliable decoded bits, it also stores the value of
L (uk
 y_) calculated by using Equation (4). The metric differences
between the surviving and the discarded path are stored together
with the binary vector of δ � 1 bits in length, which indicates the
sequence of discarded path bits uk from k back to k � δ to compare
the differences with the surviving path. This series of bits is called
the update sequence and is given by output modulo 2 between the
previous δ � 1 and the decoded bit along the surviving and the
discarded paths. When SOVA identifies the ML path, the update
sequences and metric differences along the path are stored and
used to calculate the value of L (uk
 y_).

C. Iterative decoding
Now we will describe how iterative decoding works. Fig. 2

shows the schematic of turbo decoder, and it describes the inputs
and outputs of individual blocks.

minL u y uk k
i k k u u

i
s

k k
i

i. D
g !d= +

` j

169C O M M U N I C A T I O N S 2 A / 2 0 1 3 �

R E V I E W

The first decoder in the first iteration receives a sequence
Lc y_(1) from the transmission channel, which includes systematic
bits Lcyks and parity bits Lcykl from the first encoder. Usually only
half of the parity bits are received because these bits have been
punctured in the transmitter. The decoder inserts zeros on the punc-
tured places in the soft channel output Lcyks. The first decoder
begins processing the soft input from the channel. The output of
the first decoder is conditional LLR L11(uk
 y_) of data bits uk ,
where k � 1, 2, … N. The subscript of symbol L11(uk
 y_) denotes
a-posteriori LLR in the first iteration from the first decoder. In the
first iteration the first decoder has no a-priori information about
bits, therefore the value of L(uk) � 0, which corresponds to an a-
priori probability of 0.5. Now the second decoder begins to operate.
It receives the sequence Lc y_(2) which contains systematic bits for
the first decoder which passes through the interleaver and the
parity bits from the second encoder. Furthermore, it receives a-
priori LLRs L(uk) which is generated from the conditional LLR
L11(uk
 y_) from the first decoder. As can be seen from the figure,
the extrinsic information Ls(uk) from the first decoder is adjusted
by the interleaver to match with the sequence of input bits enter-
ing the second decoder. The second decoder uses this information
and the received interleaved sequence Lc y_(2) to calculate the a-pos-
teriori LLR L12(uk
 y_). Now by the equation [4, 5]:

(5)

the systematic soft input Lc yks and a-priori information L(uk) from
the previous decoder are subtracted from the decoder output
L(uk
 y_). The calculated value is the extrinsic information Ls(uk)
and it is used as a-priori information for the first decoder in the
second iteration. This ends the first iteration for both decoders.

In the second iteration the first decoder processes the received
sequence Lc y_(1) again, but now it has available a-priori informa-

L u L u L uy L yk k ks c ks= - -_ ` _i j i

tion which is de-interleaved extrinsic information Ls(uk) calculated
by the second decoder in first iteration from the a-posteriori
L12(uk
 y_). Now, the first decoder can calculate a more accurate
a-posteriori LLR L21(uk
 y_). The second iteration continues in
the second decoder. It uses the more accurate a-posteriori LLR
L21(uk
 y_) from the first decoder which calculated more accurate
a-priori information L(uk) by using Equation (5). This informa-
tion is used together with the received sequence Lc y_(2) to calculate
L22(uk
 y_) from which Ls(uk) is then calculated for the following
(first) decoder.

When the series of iterations is completed, the turbo decoder
output is given by de-interleaving the a-posteriori LLR L12(uk
 y_)
of the second decoder where i is the number of iterations used.
The signs in a-posteriori sequences give the hard decision output,
that is �1 or �1.

4. Performance analysis of turbo codes

In this chapter we will present simulations based on the effect
of parameters on the performance of turbo codes. The parameters
that were used in the simulation are shown in Table 1. Turbo
encoder uses two parallel concatenated encoders. Selected as the
code was the RSC with generator polynomials G0 � 37, G1 � 21
(octal) and constraint length of code K � 5. The interleaver chosen
was the pseudo-random interleaver with length L � 2048 bits.
Unless specified otherwise, puncturing the parity bits to one half
will always be used, which will increase the information rate to
R � 1/2. The decoder uses the SOVA algorithm; usually 8 itera-
tions were used for decoding. The AWGN transmission channel
with BPSK modulation is used in the simulation.

Fig. 2 Turbo decoder schematic

170 � C O M M U N I C A T I O N S 2 A / 2 0 1 3

R E V I E W

The performance of turbo codes can be influenced by many
parameters. Some of these parameters are:
� The number of decoding iterations used.
� The use of puncturing in encoding.
� The generator polynomials of the codes.
� The frame lengths of input data.

A. Effect of the number of iterations

Fig. 3 shows the performance of turbo codes depending on
the number of decoder iterations. Uncoded BER is shown for com-

parison. The performance after the first iteration of the turbo
decoder should be theoretically comparable with the performance
of the convolutional code [5]. As the number of iterations increases,
the performance of the decoder increases too. For example, the
improvement of the performance between the first and second
iterations is about 1.2 dB at BER 10�4. This performance increase
continues up to the eighth iteration. Code gain between the eighth
and fourteenth iteration is only 0.1 dB at BER 10�4. From the
figure it is possible to conclude that the increasing number of iter-
ations increases not only the performance of the code but also the
computational complexity in decoding; therefore it is recommended
to use between 4 and 14 decoder iterations. For this reason, only 8
decoder iterations are used in the following simulations.

B. Effect of puncturing
As already described, the turbo encoder uses two or more

encoders which produce parity bits. In these simulations the RSC
encoders are used. This is the most common solution which is
able to achieve an information rate of below 1/3. In order to achieve
an information rate of 1/2, every second parity bit from each
encoder must be punctured. It is also possible to use the code
without puncturing and thus keep the information rate at 1/3. The
performance of unpunctured code is shown in Fig. 4. Encoders
use the same parameters as in the previous simulation, Fig. 3. The
turbo encoder for unpunctured code has at BER 10�4 of a code
gain which is 0.5 dB better than the turbo encoder which used
puncturing. Very similar gains may also be achieved for different

Parameters of turbo encoder and decoder Table 1

Channel AWGN

Modulation BPSK

Encoders Two identical RSC

RSC
Parameters

n � 2, k � 1, K � 5,
G0 � 37, G1 � 21

Puncturing
Half parity bits from each encoder,

information rate R � 1/2

Decoder SOVA

Iterations 8

Interleaver 2048-bit pseudo-random interleaver

Fig. 3 Turbo coding BER performance using different numbers of iterations

171C O M M U N I C A T I O N S 2 A / 2 0 1 3 �

R E V I E W

generator polynomials. From the figure it is possible to conclude
that better results are obtained if puncturing is not used. But this
is an improvement in the order of tenths of a decibel. Taking into
account the lower number of transmitted bits in the case of punc-
turing, in some cases it may be considered preferable to use punc-
turing. Puncturing does not affect the computational complexity
of encoding and decoding. It only reduces the number of bits trans-
mitted by a transmission channel and thus reduces the transmission
bandwidth.

C. Effect of generator polynomial
Fig. 5 shows the dependence of the performance of turbo con-

volutional code on the generator polynomial. The first code selected
was the RSC code with generator polynomials G0 � 7, G1 � 5 and
constraint length K � 3. The second code selected was K � 4,
G0 � 17, G1 � 15. This code achieves performance that is about
higher than that achieved by the code with constraint length K �
� 3 at BER of 10�4. The third selected code, which was used for
all simulations, has a constraint length K � 5 and generator poly-
nomials G0 � 37, G1 � 21. Compared with the first code (K � 3),
it reaches a performance that is about 0.3 dB higher at a BER of
10�4; in comparison with the code K � 4, its performance increases
by about 0.125 dB. With increasing constraint length of the code
and with greater generator polynomials the performance of turbo
codes increases, but what also increases is the size of trellis diagram
and thus the computational complexity of decoding.

D. Effect of frame length
Fig. 6 shows the performance of turbo codes depending on the

frame length. For many applications, such as applications using
real-time transmission, a large frame length is absolutely unaccept-
able. Frames with a length of 256 bits are useful for voice trans-
mission and 1024 to 2048 bits for video transmission. Systems
with larger frame lengths can be used to transfer data and for
applications that do not require real-time transmission. The best
result in the simulation was reached by a turbo code with a frame
length of 65536 bits. The turbo code with a frame length of 65536
bits has a code gain of 0.35 dB compared to turbo codes with
a frame length of 2048 bits and 0.6 dB to turbo codes with a frame
length of 1024 for BER of 10�4. With growing frame length the
performance of turbo convolutional codes increases but the delay
gets affected and for shorter frames reaches lower values.

5. Conclusion

This article deals with the problem of turbo codes. It describes
a basic structure of turbo encode using two identical RSC codes
and turbo decoder which uses Viterbi algorithm. Furthermore, it
also presents basic mathematical equations for the SOVA decod-
ing algorithm and describes iterative decoding. Simulations were
performed for different parameters of turbo codes. Based on these
simulations, it is possible to conclude that the performance of

Fig. 4 Comparison of BER performance between punctured and unpunctured turbo codes

172 � C O M M U N I C A T I O N S 2 A / 2 0 1 3

R E V I E W

Fig. 6 Effect of frame length on BER performance of turbo coding

Fig. 5 Effect of constraint length and generator polynomial on the BER performance of turbo coding

173C O M M U N I C A T I O N S 2 A / 2 0 1 3 �

R E V I E W

turbo codes decreases when puncturing is used. On the contrary,
the performance of turbo codes increases with increasing number
of the decoding iterations performed by an appropriate choice of
the code (generator polynomial) or by changing the frame length.
It is possible to implement a high performance codec.

Acknowledgement
The described research was performed in laboratories sup-

ported by the SIX project; the registration number CZ.1.05/2.1.00/
03.0072, the operational program Research and Development for
Innovation and the Technology Agency of Czech Republic project
No. TA02020856.

References

[1] LEE, L. H. C.: Convolutional Coding – Fundamentals and Applications. Artec House, 1997, ISBN 0-89006-914-X.
[2] LIN, S., COSTELLO, D. J.: Error Control Coding: Fundamentals and Applications, second edition. Prentice Hall: Englewood Cliffs,

NJ, 2005, ISBN: 0-13-042672-5.
[3] FRANEKOVA, M., NAGY, P.: Ciphering Systems Based on The Error Correcting Coding Techniques, Communications – Scien-

tific Letters of the University of Zilina, No. 3, 1999, ISSN 1335-4205
[4] GLAVIEUX, A.: Channel Coding in Communication Networks: From Theory to Turbo Codes. Wiley-ISTE, 2007, ISBN: 978-1-90520-

924-8.
[5] HANZO, L., LIEW, T. H., YEAP, B. L.: Turbo Coding, Turbo Equalisation and Space-Time Coding for Transmission over Fading

Channels. John Wiley, 2002, ISBN: 0470847263.
[6] MOON, T. K.: Error Correction Coding: Mathematical Methods and Algorithms. Wiley-Interscience, 2005, ISBN-13: 978-0070010697.
[7] FARELL, P. G., MOREIRA, J. C.: Essentials of Error-Control Coding. John Wiley, 2006, ISBN-13 978-0-470-02920-6.

