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ENERGY EFFICIENT SPEED AND POSITION CONTROL
OF ELECTRIC DRIVES WITH PMSM

A new speed and position controller respecting principles of near-energy optimal control for the drives with permanent magnet synchro-

nous motor are developed as a contribution to the energy saving and environmental protection. Two various approaches to the energy saving
controller design are analysed. The first approach is strictly based on energy optimal control theory and derives analytical solutions of the
control problem. The second approach develops approximated solution for the drive position controller when the optimal speed trajectory
is modified to correspond to the triangular and trapezoidal profile. This approach enables not only to compare energy demands of the
individual control system design but also to exploit near-energy optimal controller for any controlled industrial drive.
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1. Introduction

The consumption of electric motor represents nearly half
(46%) of global electricity consumption. Therefore, even small
decrease of electric drives energy demands brought by efficient
energy management, can result in significant energy savings with
subsequent contribution to the protection of environment.

The main contribution of this paper is mathematical analysis
of energy-optimal speed and position control of the drives with
a permanent magnet synchronous motor (PMSM), taking into
account stator copper losses and its possible extension towards
controlled drives currently used in industry.

To complete these tasks the efficient exploitation of the
time available for prescribed manoeuvre is suggested for speed
controlled drives. For efficient position control a replacement
of the parabolic speed profile required by analytical solution of
energy optimal position control, with precisely defined trapezoidal
one is proposed. Such approach enables to exploit currently used
control techniques (constant torque control and constant speed
control) and to extend principles of near-energy optimal control
to any controlled drive with PMSM.

To get a practicable controller the influence of Coulomb
friction and constant load torque on the stator current torque
component is analyzed in two steps. Beside friction losses also
copper losses of PMSM, which create more than 80% of total
machine losses, are taking into account while the stator iron losses
are neglected. As a result of analysis the useful algorithms suitable
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for numerical implementation, which also respect prescribed time
for rest to rest manoeuvre, T are developed.

The verification of the efficient energy management of speed
and position controlled electric drives is based on principles of
forced dynamics control (FDC). FDC strategy exploits principles
of feedback linearization [ 1]. Its capability to precisely follow pre-
planned speed and position manoeuvre and compensate influence
of load torque, which is taken into account during the planning
of velocity profile, has been already experimentally verified. The
proposed control structure comprises a generator of energy saving
acceleration, speed and position profile, a zero dynamic lag
pre-compensator and FDC position control loop. Designed near-
energy optimal position control algorithm based on symmetrical
trapezoidal speed profile decreases energy demand and respects
prescribed time T_ for position manoeuvre.

Some significant progress on energy efficient speed control
of electric drives has already been made. Model reference linear
adaptive speed control of the drive with dc motor is exploited in
[2] to drive output speed at any load to the maximum efficiency
by controlling motor field current. A new energy saving control
strategy for variable speed controlled parallel pumps based on
sensorless flow rate estimation and pump operation analysis is
described in [3].

Sheta et al developed minimum energy motion control
systems respecting principles of optimal control theory for the
drive with dc motor [4]. Similar approach was applied by Dodds
et al, for the drives with PMSM [5]. Both control systems achieve
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minimization of input energy by decreasing the losses via exploitation
of the drive’s kinetic energy during motion decelerating phase with
respect to the speed profile and the field current. Drawbacks of
these strategies are assumptions of constant friction components
dependent on environmental conditions.

Due to the fact that absolute optimization of energy loss
during position control isn’t the main goal of this paper, the
symmetrical trapezoidal speed profile is chosen and modified
to achieve lower energy expenditure for a specified manoeuvre
time taking into account load torque as a function of the angular
velocity.

2. Theoretical Background
Following differential equations describe dynamics of the

rotor position, 0., speed @, and motor torque, Y. of the drive
with PMSM:

dé, _

ar - ,, (1
dw,
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where Jr is reduced moment of inertia to the shaft of PMSM, LS
and R are stator phase inductance and resistance respectively
and stator time constant, TS is defined as TS= LS/ RS.

For vector controlled PMSM constant linkage magnetic flux
=0, where i

is achieved via condition, i is magnetic flux

d dem d dem
component of the stator current [6]. In this case electrical torque

of the motor can be expressed as:
Y. = ki, )
where kr=cleM and c=3p/2 where p is number of pol-pairs,

W, is linkage flux of permanent magnet and iq (t) is torque
component of the stator current.

Exploiting state-space notation X = Ax + Bu the drive with
PMSM can be described as:
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where the system described by (1) - (3) is completed with
differential equation for constant load torque, '}7,, =0.

The function of optimal energy controller is to transfer control
system from its initial state to the demanded state (demanded
speed or position) in such a way that energy performance index
I is minimized [7 and 8]. This is achieved via energy optimal
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control algorithm, which determines optimal excitation of the
system u’(x,t), in this case control variable, u*q (x,t). Solution of
the problem is obtained in two steps. The first step is formulation
of the cost function, IO, which describes minimization problem.
The developed cost function is then completed with differential
equations based on state space description of the control system.
If the state-space description of the system has a form:

i(e)=flx(t)ul)], )

then function @ defined as:

d(x, x,u,t)=flx,u,t)—x =0, @)

becomes the second part of the cost function after multiplication
with Euler-Lagrange multipliers. The complete cost function I has
a form:

I="Lo(x,u,t)+ A" P(x, x,u,1), (8)

where L is a function describing the minimization problem and A
represents Lagrange multipliers. Then:

I, = fLo(x, u,t)dt, )

The solution of the problem requires calculation of Euler-
Lagrange equations, which can be found via partial derivatives of
the designed cost function I for individual variables of the control
system state-space description [9] as follows:

a_g (o)
Ox di\éx/)

Analytical approach to this problem is explained further for

(10)

energy minimized speed and position control of the drive with
PMSM.

2. 1. Energy Optimal Speed Control

Energy consumption of the control system depends on
minimization of copper losses given as:

L):R‘fiﬁdt. (11)

If relations for PMSM torque Y, is used, then minimization
of copper losses for prescribed manoeuvre time T_ described as
a function of the state-variable has a form:

Tm
RS 2
o f Yidr.

The complete cost function I for stator losses minimization

I = (12)

consists of (12), in which the state space description of rotor
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speed and load torque multiplied by Lagrange multipliers is
added:

Io= R; VAo, —y.+Y.)+ A7), (13)

and corresponding equations for individual Euler-Lagrange
multipliers can be expressed as follows:

g{/w dz(?ég)’ —A =0, (14a.b)
g{/ﬁ - %(%“;) A= 4., (15a.b)
gé %(gl ) J,A=0. (16a,b)
Using (14b) Lagrange multiplier I, is expressed as:

A= 2 e (17

From (16b) for the same Lagrange multiplier 1 is valid:

Adi=c. (18)
Exploiting (15b) and (18) multiplier 1, is defined as:
A, =cit+cs. (19)

Electrical motor torque can be expressed using (17) and (18):

Subsequently, the cost performance index is defined as:

Tm

1= R; f y:dt (25)
kr
0
and for energy optimal speed control results in:
I= fﬂ T,(J.6 +7.), (26)
T

where €,=(Q; gem - )/Tm is prescribed drive acceleration.

The conclusion for this paragraph of energy optimal speed
controller can be formed as: The cost performance index is direct
proportional to the prescribed angular acceleration of the drive
and, therefore, the longer is prescribed manoeuvre time Tm for
given change of the drive’s velocity, the lower energy expenditures
are required.

Results for energy optimal control of the drive speed are
shown in Fig. 1. For manoeuvre time Tm=0,25 s and demanded
speed, @, 4m =100 rads’ the individual time functions show: a)
ideal drive acceleration and b) rotor angular speed.

2.2. Energy Optimal Position Control

In the case of drive’s position control the complete cost
function [, for stator losses minimization consists of minimization
problem description (12) completed with the state space
description (function ®(x, X, u, t)) for the rotor position and
speed and load torque has a form:

Rt Mo, =y + 7))+ 1.(6,— @)+ 7.

p 2
JE ki (27)
Y.= bl ]E Ci. (20) Euler-Lagrange equations for the position control are:
Derivative of rotor speed is expressed using (2) and (20): ol ( 61 ) =0 (28a,b)
poed s exp 8 : sy, ~di\sy.) e VM0 ’
-1 < ki )
., ci—Ye). 21
YAV @1 Sl _ d(SL\ 4 _ 4
Sy = di\ 5y c A=Al (29a,b)
If (21) is integrated, then: Vi Vi
1 kT 6Ip _ d 61[3 _ 3
=7 <2R c }/,/>t+c3. (22) S5y, = di\sa, ) A =T, (30a,b)
Constants ¢, and c, are calculated using boundary conditions
N 6Ip _ 5[13
as follows: 50 dl‘ 5 A/z (31a,b)
fort=0 @,=@, from which c3=a)o ; " 9'
fort = Tm @,=A, 4om and ¢, is done as: From (31b) is clear that multiplier ﬁ,z is constant:
c = @(lw + yl,)‘ (23) A =c. (32)
k7 T,
Using ¢, in relation (20) for electrical torque results in: Combining (30b) and (32) together for derivative of multiplier
1. the following is valid:
— a)r dem ~_ a)O !
ye=J Tty (24) ~c
m Al — L (33)
06 ® COMMUNICATIONS 1/2014



Then multiplier A can be expressed as:

Mi=TFlive (34)
And, finally from (29b), Lagrange multiplier As is:

_ 2
A= Clt_+C2t+C3. (35)

J 2

If (28b) and (34) are combined together, then for electrical
torque the following is valid:

The constants ¢, and c, are again calculated using boundary

(36)

conditions for motor torque, which can be expressed for constant
torque as:
fort=0 Y.=7Yo+Yrandort=T Y.==Yo+ Y1,

which results in ¢,=(2R /k ?)(y,+7,) and ¢ =4R yJ /(k’T ). The
required torque of PMSM has a general form:

Y.= ’}’0(1 - ngl‘>+'}/l‘.

37

Derivative of rotor speed is expressed using (2) and (37):

dw, _ 2
150 —y0<1 TJ)‘

If (38) is integrated with regard to the initial condition @, (0)=0
and then the rotor speed is expressed as:

a)r(z):zf(t—%—i).

In a similar way, using (1) and q(0)=0 the rotor position is
calculated as:

o=-T{z-37)

The value of initial motor torque 7, , which completes all

(38)

(39)

(40)

control parameters, is expressed via the condition that at the end
of the manoeuvre time t=T  the rotor position should achieve
a demanded position O, son. The demanded value of initial motor
torque is:

_ 6J,

’}/() - ?erdem- (41)

The cost performance index defined by (25) for the rotor
position control is equal:

::R<12ﬁ
K\ T,
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For the position control time function of consumed energy is:
6r dom

Ec=f ycde,ze,‘dm[%(l—%t)ﬂ/,]. (43)

The results for energy optimal control of the drive position
are shown in Fig. 2. For manoeuvre time T =1 s and demanded
position, q_, =10 rad individual time functions show: a) ideal
drive acceleration, b) rotor speed, ¢) rotor angular position, which
achieves a demanded position at T =1 s.
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Fig. 2 Energy optimal position control

3. Position Control System Design

The individual approaches to energy efficient position
control of electric drives differ mainly by description of velocity
time profile. A controller for dynamical systems with energy
optimization performances was proposed in [10].

A generation of three steps velocity function based on
efficient binary search algorithm minimizing energy demands
was proposed by Kim et al for a battery powered wheeled mobile
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robot [11] in order to extend battery run time. A new objective
function considering practical energy consumption was developed
together with an efficient iterative search algorithm finding its
numerical solution. Trapezoidal velocity function with constant
acceleration, deceleration and cruising speed was used by Dodds
for practicable system based on sliding mode control of the
PMSM drive position [12]. Both papers report nearly 30 % less
energy loss if compared with a conventional concept of control.

Minimization of the total dissipated energy for a position
control system with reduction gear taking into account Coulomb
and viscous friction was proposed by Zhu et al [13]. The optimal
drive velocity and current functions are obtained as a function of
the optimal zero crossing time. The comparison of the dc motor
drive consumptions for optimized algorithm and trapezoidal
velocity profile revealed energy savings of optimized algorithm,
which were proportional to a moment of inertia.

3.1. Speed Profile Simplification

To avoid continues speed control during a position
manoeuvre often the control on motor torque constant value
with one switching in the middle of manoeuvre time is used to
perform near-time optimal position control. Time functions for
acceleration, speed and rotor position are shown in Fig. 3.

A more efficient energy saving solution for a near-energy
optimal position control is proposed exploiting symmetrical
trapezoidal function of rotor speed as shown in Fig. 4 together
with other two control variables. In this case the control tasks are
completed with control on constant torque during acceleration
and deceleration intervals and control on constant cruising speed
in the middle interval, which are the most common control
techniques used in drive control.
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Fig. 3 Energy saving control, triangular speed profile
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Fig. 4 Energy saving control, trapezoidal speed profile

Replacement of a continuously varying energy-optimal speed
profile with symmetrical trapezoidal one was confirmed through
analytical analysis of the Joule losses in stator winding and losses
to cover Coulomb and viscous friction in [14]. Similar approach
was applied to the drive with friction or load torque as a quadratic
function of rotor speed [15]. Newton-Raphson search algorithm
is exploited to find acceleration time with minimal energy
expenditures.

The main goal of the position control system suitable for any
described energy saving position control strategy is to track the
best designed position, velocity and acceleration functions. The
position control system shown in Fig. 6 contains an energy saving
position generator, a zero dynamic lag pre-compensator and FDC
based position control loop.

3.2. Forced Dynamics Speed Control

Speed control loop of the PMSM, which is designed using FDC,
respects the vector control conditions [ 16 and 17]. Based on feedback
linearization the rotor speed obeys (2) and the differential equation
describing the closed loop dynamical behaviour has, therefore, linear
first order dynamics (44) where T  is the prescribed time constant
and @ 4m, is the demanded rotor speed:

1

0,=7(6.-6,). (44)
[
Setting i,=0 for vector control of the PMSM up to the
nominal speed and equating the RHS of (2) and (44) yields the

FDC speed control algorithm:

iddem = O

and

gam = L (6.-6,)+T (45)
q dem CIPPM Ta) rd r L]
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Current components i L dem o

control variables which means that the stator current equations

and i =i are regarded as the
q gdem

are eliminated from the control system design. To estimate net

load torque on the motor shaft the torque observer with filtering

effect is used.

3.3. Forced Dynamics Position Control

For the design of a position control loop the FDC speed
control loop is replaced by its ideal transfer function and
completed with a kinematic integrator. Parameters of this loop are
adjusted using Dodds’s settling time formula [18]:

0.(s) _ 1 |
0. (s) 1+s To B
L5(1+n) ]|, )
1
47—?6 4T¥9
31 ST+ 9 s+ 1

Converting (46) into time domain yields the second order
differential equation for the rotor position:

= 81 i
0 =7, T

FDC law of the rotor angle is obtained by substituting (44)
for LHS of (47) and solving it for the demanded rotor speed as

(6., —6,)— =6, (47)

a control variable 9,.d :

0. = (1 - 9T—T:’>9 + 81T"’(9£d -0,). (48)

4T

A block diagram for FDC of rotor position is shown in Fig. 5.

Rotor speed Kinematic
. control loop integrator
6, 6 :
d 8T, + rd 1 er_ | 1 | o,
- 4T529 + 1+9 o | s |
6,
1- 2T
Tse

Fig. 5 Block diagram for FDC position control

Energy Saving Position Generator

: Pre-compensator
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3.4. Pre-compensator and Torque Observer

Closed loop dynamic of a position controller is prescribed by
(46), therefore, the pre-compensator has then the inverse transfer
function as follows:

0..(s)
0.(s)

) ATC

_ 47,
=581

9

+s

Fre(s)= + 1. (49)

Implementation of the pre-compensator to the overall energy
saving position control block diagram is shown in Fig. 6. The
design of observer was published in previous work and details can
be found in [19].

4. Verification by Simulations

Energy demands of the designed energy-optimal control
system and its two possible modifications as near-energy optimal
control are investigated to observe their tracking abilities as well
as energy expenditures.

4.1. Tracking Abilities Evaluation

All the simulations presented are carried out with zero
=10 rad

r dem
with prescribed manoeuvre time T_=0.25 s was applied to

initial state variables. A step position demand 0

investigate response of the control system. The computational
step of simulations is h=1e-4 s. PMSM parameters are listed in
the Appendix.

Ideal state-variables produced by an energy saving profiles
generator are shown in Fig. 7, in which time functions of speed
and position responses of the drive for energy optimal and
another two near-energy optimal control techniques can be seen.
It’s clear from subplot a) that the properly adjusted trapezoidal
approximation of parabolic speed increase (and decrease) of
energy-optimal control are very close and absolute error, e (t)
doesn’t exceed 3 % . Also the magnitude of speed for both time
functions is identical.

FDC Position Control Loop

81T,
4T}

Fig. 6 Overall PMSM position control system block diagram for losses optimization
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Fig. 7 Ideal state-variables for energy optimal
and near-energy optimal control

As it was observed from simulations tracking abilities of the
designed overall control systems are capable to follow desired
state variables with negligible dynamic lag.

4.2. Evaluation of Energy Consumption

Described energy saving control algorithms for PMSM were
tested by simulation. Total energy consumption of the drive was
evaluated as:

3 T
W= [ (i, + wii)dr.

0

(51

To check the correctness of energy computation, all output
drive’s energy components including energy of chokes and energy
of rotational parts were summed in a good agreement with total
input energy (51). Results of energy consumption evaluation
are shown for idle running drive and drive loaded with nominal
torque in Fig. 8. As Fig. 8 shows the total energy consumption
for idle running and nominally loaded energy optimal controlled
drive is W =188 Ws and W =580 Ws respectively. These
values were taken as a base for comparison of other two near-
energy optimal control techniques.
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b) =M y Wirp (t)
500 £
400 //
300
/ Wiza(t)
200
N g
— Whia (1) t[s]
00 0.05 0.1 0.15 0.2 0.25

Fig. 8 Total energy consumption for prescribed position manoeuvre

Further observations show that the triangular speed profile
is the most energy demanding. Its energy expenditures are by
25.8 % and 12.5 % higher for no-loaded and nominally loaded
drive respectively.

On the contrary, the designed trapezoidal speed profile
with respect to load conditions has only by 2.4 % and 2.7 %
respectively higher energy demands if compared with the energy
optimal control. It is necessary to note that energy expenditures
are proportional to the moment of inertia, therefore the energy
expenditures can differ for various moments of inertia.

5. Conclusion

A new energy saving speed and position controller respecting
near-energy optimal control of PMSM were designed and verified
by simulations.

Both control algorithms are based on losses minimization,
therefore, their validity can be extended to any load with constant
torque. Derived relations mathematically justify the choice of
symmetrical trapezoidal speed profile selection for a position
manoeuvre with prescribed position time.

The verification by simulations confirmed the lowest energy
expenditures of the drive with energy-optimal control. Mutual
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comparison of near-energy optimal position control with triangular
and trapezoidal angular speed profiles has shown higher energy
savings of the symmetrical trapezoidal angular speed profile..
Moreover, a developed energy saving position control system
is practicable due to its simplicity and implementation ability
exploiting the most common modes for controlled drives as
control on constant torque and control on constant speed.
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Appendix
Parameters of PMSM are: winding resistance, Rs=l.3 Q,

inductances, L d=14.4 mH, Lq=l6.3 mH, permanent magnet flux,
lI»‘PM=O,13 Wb, number of pole pairs, p=5 and moment of inertia,
J1=0.005 kgm?.
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