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1.	 Introduction

The consumption of electric motor represents nearly half 
(46%) of global electricity consumption. Therefore, even small 
decrease of electric drives energy demands brought by efficient 
energy management, can result in significant energy savings with 
subsequent contribution to the protection of environment. 

The main contribution of this paper is mathematical analysis 
of energy-optimal speed and position control of the drives with 
a  permanent magnet synchronous motor (PMSM), taking into 
account stator copper losses and its possible extension towards 
controlled drives currently used in industry. 

To complete these tasks the efficient exploitation of the 
time available for prescribed manoeuvre is suggested for speed 
controlled drives. For efficient position control a  replacement 
of the parabolic speed profile required by analytical solution of 
energy optimal position control, with precisely defined trapezoidal 
one is proposed. Such approach enables to exploit currently used 
control techniques (constant torque control and constant speed 
control) and to extend principles of near-energy optimal control 
to any controlled drive with PMSM. 

To get a  practicable controller the influence of Coulomb 
friction and constant load torque on the stator current torque 
component is analyzed in two steps. Beside friction losses also 
copper losses of PMSM, which create more than 80 % of total 
machine losses, are taking into account while the stator iron losses 
are neglected. As a result of analysis the useful algorithms suitable 

for numerical implementation, which also respect prescribed time 
for rest to rest manoeuvre, T

m
 are developed.

The verification of the efficient energy management of speed 
and position controlled electric drives is based on principles of 
forced dynamics control (FDC). FDC strategy exploits principles 
of feedback linearization [1]. Its capability to precisely follow pre-
planned speed and position manoeuvre and compensate influence 
of load torque, which is taken into account during the planning 
of velocity profile, has been already experimentally verified. The 
proposed control structure comprises a generator of energy saving 
acceleration, speed and position profile, a  zero dynamic lag 
pre-compensator and FDC position control loop. Designed near-
energy optimal position control algorithm based on symmetrical 
trapezoidal speed profile decreases energy demand and respects 
prescribed time T

m
 for position manoeuvre.

Some significant progress on energy efficient speed control 
of electric drives has already been made. Model reference linear 
adaptive speed control of the drive with dc motor is exploited in 
[2] to drive output speed at any load to the maximum efficiency 
by controlling motor field current. A new energy saving control 
strategy for variable speed controlled parallel pumps based on 
sensorless flow rate estimation and pump operation analysis is 
described in [3]. 

Sheta et al developed minimum energy motion control 
systems respecting principles of optimal control theory for the 
drive with dc motor [4]. Similar approach was applied by Dodds 
et al, for the drives with PMSM [5]. Both control systems achieve 

ENERGY EFFICIENT SPEED AND POSITION CONTROL
OF ELECTRIC DRIVES WITH PMSM
ENERGY EFFICIENT SPEED AND POSITION CONTROL
OF ELECTRIC DRIVES WITH PMSM

Jan Vittek - Branislav Ftorek *

A new speed and position controller respecting principles of near-energy optimal control for the drives with permanent magnet synchro-
nous motor are developed as a contribution to the energy saving and environmental protection. Two various approaches to the energy saving 
controller design are analysed. The first approach is strictly based on energy optimal control theory and derives analytical solutions of the 
control problem. The second approach develops approximated solution for the drive position controller when the optimal speed trajectory 
is modified to correspond to the triangular and trapezoidal profile. This approach enables not only to compare energy demands of the 
individual control system design but also to exploit near-energy optimal controller for any controlled industrial drive. 

Keywords: Energy optimal control, electric drives with PMSM, speed and position controller, pre-compensator.

*	 1 Jan Vittek, 2 Branislav Ftorek
 	 1Department of Power Electrical Systems, Faculty of Electrical Engineering, University of Zilina, Slovakia
	 2Department of Applied Mathematics, Faculty of Mechanical Engineering, University of Zilina, Slovakia
	  E-mail: jan.vittek@fel.uniza.sk 

https://doi.org/10.26552/com.C.2014.1.64-71



65C O M M U N I C A T I O N S    1 / 2 0 1 4   ●

control algorithm, which determines optimal excitation of the 
system u*(x,t), in this case control variable, u*

q (x,t). Solution of 
the problem is obtained in two steps. The first step is formulation 
of the cost function, I

0
, which describes minimization problem. 

The developed cost function is then completed with differential 
equations based on state space description of the control system. 
If the state-space description of the system has a form: 

,x t f x t u t=o ^ ^ ^h h h6 @,	 (6)

then function Φ defined as: 

, , , , ,x x u t f x u t x 0z = - =o o^ ^h h ,	 (7)

becomes the second part of the cost function after multiplication 
with Euler-Lagrange multipliers. The complete cost function I has 
a form: 

, , , , ,I L x u t x x u tT
0 m z= + o^ ^h h,	 (8)

where L0 
 is a  function describing the minimization problem and λ 

represents Lagrange multipliers. Then: 

, ,I L x u t dt
t

t

0 0

0

1

= ^ h# ,	 (9)

The solution of the problem requires calculation of Euler-
Lagrange equations, which can be found via partial derivatives of 
the designed cost function I for individual variables of the control 
system state-space description [9] as follows:

x
I
dt
d I
xd

d
d
d

= oc m.	 (10)

Analytical approach to this problem is explained further for 
energy minimized speed and position control of the drive with 
PMSM. 

2. 1. Energy Optimal Speed Control

Energy consumption of the control system depends on 
minimization of copper losses given as: 

I R i dts q0
2= # .	 (11)

If relations for PMSM torque γe 
is used, then minimization 

of copper losses for prescribed manoeuvre time T
m 

described as 
a function of the state-variable has a form: 

I
k
R

dt
T

s
e

T

0 2
2

0

m

c= # .	 (12)

The complete cost function Iω for stator losses minimization 
consists of (12), in which the state space description of rotor 

minimization of input energy by decreasing the losses via exploitation 
of the drive’s kinetic energy during motion decelerating phase with 
respect to the speed profile and the field current. Drawbacks of 
these strategies are assumptions of constant friction components 
dependent on environmental conditions. 

Due to the fact that absolute optimization of energy loss 
during position control isn’t the main goal of this paper, the 
symmetrical trapezoidal speed profile is chosen and modified 
to achieve lower energy expenditure for a  specified manoeuvre 
time taking into account load torque as a function of the angular 
velocity.

2.	 Theoretical Background

Following differential equations describe dynamics of the 
rotor position, ri , speed r~ , and motor torque, ec  of the drive 
with PMSM:

dt
d r

r
i ~= ,	 (1)

J dt
d

r
r

e L
~ c c= - ,	 (2)

dt
d
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k

L
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u

1e

S
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S

T
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S

T
q

2c
c ~=

-
- + ,	 (3)

where Jr 
 is reduced moment of inertia to the shaft of PMSM, L

s 

and R
s 
 are stator phase inductance and resistance respectively 

and stator time constant, T
s
 is defined as T

s
= L

s
/ R

s
. 

For vector controlled PMSM constant linkage magnetic flux 
is achieved via condition, i

d dem 
= 0, where i

d  dem 
 is magnetic flux 

component of the stator current [6]. In this case electrical torque 
of the motor can be expressed as: 

k ie T qc = ,	 (4)

where kT
=c PMW  and c=3p/2 where p is number of pol-pairs,  

PMW is linkage flux of permanent magnet and i
q 

(t) is torque 
component of the stator current.

Exploiting state-space notation x Ax Bu= +o  the drive with 
PMSM can be described as: 
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where the system described by (1) – (3) is completed with 
differential equation for constant load torque, 0Lc =o .

The function of optimal energy controller is to transfer control 
system from its initial state to the demanded state (demanded 
speed or position) in such a  way that energy performance index 
I  is minimized [7 and 8]. This is achieved via energy optimal 
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Subsequently, the cost performance index is defined as: 

I
k
R

dt
T

s
e

Tm

2
2

0

c= # 	 (25)

and for energy optimal speed control results in: 

I
k
R
T J

T

s
m r r L2

2f c= +^ h ,	 (26)

where rf =( r dem~
 
– 0~  

)/T
m
  is prescribed drive acceleration.

The conclusion for this paragraph of energy optimal speed 
controller can be formed as: The cost performance index is direct 
proportional to the prescribed angular acceleration of the drive 
and, therefore, the longer is prescribed manoeuvre time T

m
 for 

given change of the drive’s velocity, the lower energy expenditures 
are required. 

Results for energy optimal control of the drive speed are 
shown in Fig. 1. For manoeuvre time T

m
=0,25 s and demanded 

speed, r dem~
 
=100 rads-1 the individual time functions show: a) 

ideal drive acceleration and b) rotor angular speed.

2.2. Energy Optimal Position Control

In the case of drive’s position control the complete cost 
function I

P
 for stator losses minimization consists of minimization 

problem description (12) completed with the state space 
description (function Φ(x, x , u, t)) for the rotor position and 
speed and load torque has a form: 

I
k
R

Jp
T

s
e r r e L Lr r2
2

32c m ~ c c m cm i ~= + - + + - +o o o^ ^h h .	
	 (27)

Euler-Lagrange equations for the position control are: 

I
dt
d I

e e

p p

dc
d

dc
d

= oc m, 
k
R2

0
T

s
e2 1c m- = ,	 (28a,b)

I
dt
d I

L L

P P

dc
d

dc
d

= oc m, 1 3m m= o ,	 (29a,b)

I
dt
d I

r r

P P

dc
d

d~
d

= oc m, Jr 12 mm =- o ,	 (30a,b)

I
dt
d I

r r

PP

d
d

d
d

i i
= oc m, 02m =o .	 (31a,b)

From (31b) is clear that multiplier 2m  is constant: 

c2 1m = .	 (32)

Combining (30b) and (32) together for derivative of multiplier 
l
1
 the following is valid:  

J
c
r

1
1m = -o .	 (33)

speed and load torque multiplied by Lagrange multipliers is 
added: 

I
k
R

J
T

s
e r r e L L2
2

1 2c m ~ c c m c= + - + +~ o o^ h 	 (13)

and corresponding equations for individual Euler-Lagrange 
multipliers can be expressed as follows: 

I
dt
d I

e edc
d

dc
d

=~ ~

oc m, 
k
R2

0
T

s
e2 1c m- = ,	 (14a,b)

I
dt
d I

L Ldc
d

dc
d

=~ ~

oc m, 1 2m m= o ,	 (15a,b)

I
dt
d I

r rdc
d

d
d
~

=~ ~

oc m, J 0r 1m =o .	 (16a,b)

Using (14b) Lagrange multiplier l
1
 is expressed as: 

k
R2
T

s
e1 2m c= .	 (17)

From (16b) for the same Lagrange multiplier l1
 is valid: 

c1 1m = .	 (18)

Exploiting (15b) and (18) multiplier l2
 is defined as: 

c t c2 1 2m = + .	 (19)

Electrical motor torque can be expressed using (17) and (18):

R
k
c2e
s

T
2

1c = .	 (20)

Derivative of rotor speed is expressed using (2) and (20): 

J R
k
c

1
2r

r s

T
L

2

1~ c= -o c m.	 (21)

If (21) is integrated, then: 

J R
k
c t c

1
2r

r s

T
L

2

1 3c~ = - +c m .	 (22)

Constants c1
 and c

3
 are calculated using boundary conditions 

as follows:
for t = 0  r~ = 0~   

from which c
3
= 0~  

;  
for t = T

m 
  

r~ = r dem~
 
 and c

1
 is done as: 

c
k
R
J T

2
T

s
r

m

r dem
L1 2

0~ ~ c=
-

+a k.	 (23)

Using c1
 in relation (20) for electrical torque results in: 

J Te r
m

r dem
L

0c
~ ~

c= - + .	 (24)
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For the position control time function of consumed energy is: 

E d T t1
2

C e r r dem
m

L0

0

r dem

c i i c c= = - +
i

c m; E# .	 (43)

The results for energy optimal control of the drive position 
are shown in Fig. 2. For manoeuvre time T

m
=1 s and demanded 

position, q
r  dem

=10  rad individual time functions show: a) ideal 
drive acceleration, b) rotor speed, c) rotor angular position, which 
achieves a demanded position at T

m
=1 s. 
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Fig. 1  Energy optimal speed control
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Fig. 2 Energy optimal position control 

3.	 Position Control System Design

The individual approaches to energy efficient position 
control of electric drives differ mainly by description of velocity 
time profile. A  controller for dynamical systems with energy 
optimization performances was proposed in [10]. 

A  generation of three steps velocity function based on 
efficient binary search algorithm minimizing energy demands 
was proposed by Kim et al for a battery powered wheeled mobile 

Then multiplier 1m  can be expressed as: 

J
c
t c

r

1
21m =

-
+ 	 (34)

And, finally from (29b), Lagrange multiplier 3m  is: 

J
c t

c t c2r
3

1
2

2 3m = - + + .	 (35)

If (28b) and (34) are combined together, then for electrical 
torque the following is valid: 

R
k
c J
c
t2e

s

T

r

2

2
1c = -a k.	 (36)

The constants c1
 and c

2
 are again calculated using boundary 

conditions for motor torque, which can be expressed for constant 
torque as:

for t = 0  e L0c c c= +  and or t = T
m 

 e L0c c c=- + , 

which results in c2
=(2R

s
/k

T
2)(γ

0 
+

 
γ

L
) and c

1
=4R

s
γ

0
J

r
/(k

T
2T

m
). The 

required torque of PMSM has a general form: 

T t1
2

e
m

L0c c c= - +c m .	 (37)

Derivative of rotor speed is expressed using (2) and (37): 

J dt
d

T t1
2

r
r

m
0

~ c= -c m.	 (38)

If (38) is integrated with regard to the initial condition r~ (0)=0 
and then the rotor speed is expressed as: 

t J t T
t

r
r m

0
2

~
c

= -^ ch m.	 (39)

In a similar way, using (1) and qr
(0)=0 the rotor position is 

calculated as: 

t J
t

T
t

2 3r
r m

0
2 3

i
c

= -^ ch m.	 (40)

The value of initial motor torque γ0
 , which completes all 

control parameters, is expressed via the condition that at the end 
of the manoeuvre time t=T

m
 the rotor position should achieve 

a demanded position r demi . The demanded value of initial motor 
torque is: 

T
J6
m

r
r dem0 2c i= .	 (41)

The cost performance index defined by (25) for the rotor 
position control is equal: 

I
k
R

T
J

T
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T

s

m

r
r dem L m2 3

2
2 2i c= +c m.	 (42)
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Fig. 4 Energy saving control, trapezoidal speed profile 

Replacement of a continuously varying energy-optimal speed 
profile with symmetrical trapezoidal one was confirmed through 
analytical analysis of the Joule losses in stator winding and losses 
to cover Coulomb and viscous friction in [14]. Similar approach 
was applied to the drive with friction or load torque as a quadratic 
function of rotor speed [15]. Newton-Raphson search algorithm 
is exploited to find acceleration time with minimal energy 
expenditures. 

The main goal of the position control system suitable for any 
described energy saving position control strategy is to track the 
best designed position, velocity and acceleration functions. The 
position control system shown in Fig. 6 contains an energy saving 
position generator, a zero dynamic lag pre-compensator and FDC 
based position control loop. 

3.2. Forced Dynamics Speed Control

Speed control loop of the PMSM, which is designed using FDC, 
respects the vector control conditions [16 and 17]. Based on feedback 
linearization the rotor speed obeys (2) and the differential equation 
describing the closed loop dynamical behaviour has, therefore, linear 
first order dynamics (44) where Tω  is the prescribed time constant 
and r dem~ , is the demanded rotor speed: 

T
1

r rd ri i i= -
~

p o o^ h.	 (44)

Setting id
=0 for vector control of the PMSM up to the 

nominal speed and equating the RHS of (2) and (44) yields the 
FDC speed control algorithm: 

i 0d dem =    

and  

i
c T

J1
q dem

PM
rd r Li i

W
C= - +

~

o o t^ h; E.	 (45)

robot [11] in order to extend battery run time. A new objective 
function considering practical energy consumption was developed 
together with an efficient iterative search algorithm finding its 
numerical solution. Trapezoidal velocity function with constant 
acceleration, deceleration and cruising speed was used by Dodds 
for practicable system based on sliding mode control of the 
PMSM drive position [12]. Both papers report nearly 30 % less 
energy loss if compared with a conventional concept of control.

Minimization of the total dissipated energy for a  position 
control system with reduction gear taking into account Coulomb 
and viscous friction was proposed by Zhu et al [13]. The optimal 
drive velocity and current functions are obtained as a function of 
the optimal zero crossing time. The comparison of the dc motor 
drive consumptions for optimized algorithm and trapezoidal 
velocity profile revealed energy savings of optimized algorithm, 
which were proportional to a moment of inertia. 

3.1. Speed Profile Simplification

To avoid continues speed control during a  position 
manoeuvre often the control on motor torque constant value 
with one switching in the middle of manoeuvre time is used to 
perform near-time optimal position control. Time functions for 
acceleration, speed and rotor position are shown in Fig. 3. 

A  more efficient energy saving solution for a  near-energy 
optimal position control is proposed exploiting symmetrical 
trapezoidal function of rotor speed as shown in Fig.  4 together 
with other two control variables. In this case the control tasks are 
completed with control on constant torque during acceleration 
and deceleration intervals and control on constant cruising speed 
in the middle interval, which are the most common control 
techniques used in drive control. 
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Fig. 3 Energy saving control, triangular speed profile
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3.4. Pre-compensator and Torque Observer

Closed loop dynamic of a position controller is prescribed by 
(46), therefore, the pre-compensator has then the inverse transfer 
function as follows: 

F s
s

s
s
T

s
T

81
4

9
4

1PC

r

rd s s2
2

i
i

= = + +^ ^
^h h
h

.	 (49)

Implementation of the pre-compensator to the overall energy 
saving position control block diagram is shown in Fig.  6. The 
design of observer was published in previous work and details can 
be found in [19]. 

4.	 Verification by Simulations

Energy demands of the designed energy-optimal control 
system and its two possible modifications as near-energy optimal 
control are investigated to observe their tracking abilities as well 
as energy expenditures. 

4.1. Tracking Abilities Evaluation

All the simulations presented are carried out with zero 
initial state variables. A  step position demand θ

r  dem
=10  rad 

with prescribed manoeuvre time T
m 

=
 
0.25  s  was applied to 

investigate response of the control system. The computational 
step of simulations is h=1e-4 s. PMSM parameters are listed in 
the Appendix.

Ideal state-variables produced by an energy saving profiles 
generator are shown in Fig. 7, in which time functions of speed 
and position responses of the drive for energy optimal and 
another two near-energy optimal control techniques can be seen. 
It’s clear from subplot a) that the properly adjusted trapezoidal 
approximation of parabolic speed increase (and decrease) of 
energy-optimal control are very close and absolute error, eω

  (t) 
doesn’t exceed 3

 
%

 
. Also the magnitude of speed for both time 

functions is identical. 

Current components i
d
=i

d dem
 and i

q
=i

q dem
 are regarded as the 

control variables which means that the stator current equations 
are eliminated from the control system design. To estimate net 
load torque on the motor shaft the torque observer with filtering 
effect is used. 

3.3. Forced Dynamics Position Control

For the design of a  position control loop the FDC speed 
control loop is replaced by its ideal transfer function and 
completed with a kinematic integrator. Parameters of this loop are 
adjusted using Dodds’s settling time formula [18]: 
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	 (46)
                                     .

Converting (46) into time domain yields the second order 
differential equation for the rotor position: 

T T4
81 9

r
s

rd r
s

r2i i i i= - -
i i
lp o^ h .	 (47)

FDC law of the rotor angle is obtained by substituting (44) 
for LHS of (47) and solving it for the demanded rotor speed as 
a control variable rdio :

T
T

T
T

1
9

4
81

rd
s

r
s

rd r2i i i i= - + -
i

~

i

~ lo oc ^m h.	 (48)

A block diagram for FDC of rotor position is shown in Fig. 5.
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Fig. 5  Block diagram for FDC position control

Fig. 6  Overall PMSM position control system block diagram for losses optimization
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To check the correctness of energy computation, all output 
drive’s energy components including energy of chokes and energy 
of rotational parts were summed in a good agreement with total 
input energy (51). Results of energy consumption evaluation 
are shown for idle running drive and drive loaded with nominal 
torque in Fig. 8. As Fig. 8 shows the total energy consumption 
for idle running and nominally loaded energy optimal controlled 
drive is W

t  0 
=188  Ws and W

t  nom 
=580  Ws respectively. These 

values were taken as a  base for comparison of other two near-
energy optimal control techniques. 
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Fig. 8 Total energy consumption for prescribed position manoeuvre 

Further observations show that the triangular speed profile 
is the most energy demanding. Its energy expenditures are by 
25.8  % and 12.5  % higher for no-loaded and nominally loaded 
drive respectively. 

On the contrary, the designed trapezoidal speed profile 
with respect to load conditions has only by 2.4  % and 2.7  % 
respectively higher energy demands if compared with the energy 
optimal control. It is necessary to note that energy expenditures 
are proportional to the moment of inertia, therefore the energy 
expenditures can differ for various moments of inertia. 

5.	 Conclusion

A new energy saving speed and position controller respecting 
near-energy optimal control of PMSM were designed and verified 
by simulations. 

Both control algorithms are based on losses minimization, 
therefore, their validity can be extended to any load with constant 
torque. Derived relations mathematically justify the choice of 
symmetrical trapezoidal speed profile selection for a  position 
manoeuvre with prescribed position time. 

The verification by simulations confirmed the lowest energy 
expenditures of the drive with energy-optimal control. Mutual 
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Fig. 7  Ideal state-variables for energy optimal  
and near-energy optimal control

As it was observed from simulations tracking abilities of the 
designed overall control systems are capable to follow desired 
state variables with negligible dynamic lag. 

4.2. Evaluation of Energy Consumption 

Described energy saving control algorithms for PMSM were 
tested by simulation. Total energy consumption of the drive was 
evaluated as:

W u i u i dt2
3

t q q d d

T

0

m

= +^ h# .	 (51)
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Appendix
Parameters of PMSM are: winding resistance, R

s
=1.3  Ω, 

inductances, L
d
=14.4 mH, L

q
=16.3 mH, permanent magnet flux, 

Ψ
PM

=0.13 Wb, number of pole pairs, p=5 and moment of inertia, 
J

r
=0.005 kgm2. 

comparison of near-energy optimal position control with triangular 
and trapezoidal angular speed profiles has shown higher energy 
savings of the symmetrical trapezoidal angular speed profile.. 

Moreover, a developed energy saving position control system 
is practicable due to its simplicity and implementation ability 
exploiting the most common modes for controlled drives as 
control on constant torque and control on constant speed. 
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