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1.	 Introduction

Numerical simulation of the construction materials elastic-
plastic behaviour is an important part of the various scientific 
works and studies today. A non-linear behaviour of the material 
does not mean the complete loss of bearing; it leads to the 
modification of some mechanical properties and to the stress 
redistribution in the structure caused by the plastic zones 
formation. In the case of simulation of the object behaviour under 
the loading exceeding the yield stress there are several problem 
types [1, 2, 3, 4, 5 and 6]:
•	 definition of the applicable elastic-plastic mathematical 

model,
•	 knowledge about material ”constants“ used in the model,
•	 choice of applicable computing tool or method (FEM, etc.),
•	 possibility to verify the computed values with the experiment,
•	 other specific problems (temperature influence, etc.).

The paper target will be to present the chosen mathematical 
models for the numerical solving of the beam elastic-plastic 
behaviour with the consequent plasticized zones identification 
in the cross-section area and residual stresses distribution. 
Continuous and discontinuous model analysis will be performed 
on a  numerical example and compared with the FEM model 
in ADINA. The main goal of the structure state elastic-plastic 
analysis is to determine the stress, strain and boundaries between 
the elastic and plastic zone. This is true for the structure exposed 
to outer forces during the whole loading distribution [7]. There 
are two main theories of the elastic-plastic analysis; plastic flow 
theory and plastic strain theory.

Plastic flow theory assumes that the stress and strain state 
depends on the load history. This leads to the incremental 
problem solving, i.e. step by step. Loading will gradually grow 
with the step of DF and for each load increment it is needed to 
evaluate the strain and stress state in particular areas. The method 
then evaluates if these areas have been plasticized. This theory 
simulates the real behaviour in a better way but it is more time 
consuming [8 and 9].

Plastic strain theory is based on the idea that the loading 
itself does not depend on the trajectory and, therefore, it is 
not necessary to track the stress history. The problem can be 
solved by loading the structure by whole force F without any 
increments. The results are obtained by the analysis of the given 
nonlinear differential system. The theory is currently used very 
rarely; it is applicable just for the small range of materials, slow 
and monotonic loading and for simple problems with very small 
deformation speed [5].

2.	 Algorithms proposition

2.1 Proposed model No. 1

A new numerical approach will be presented; this approach 
allows analyzing the stress level throughout the whole cross-
section area in the case of its plasticization [10 and  11]. The 
process is based on stress vector increment calculation tvD ^ h 
which defines discrete distribution of the stress increment in the 
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height coordinates ;h dy h dy2 2- + -^ ^h h  and MozD  
is the difference between the loading moment and the moment 
calculated from the stress distribution in the beam cross-section 
(with constant width b)
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The Mo tzd ^ h is the loading bending moment to the axis 
of z and M tzp

i ^ h is the moment really transferred by the beam, 
calculated as
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After the substitution of equations (6) and (7) into eq. (5), 
the result equation will be
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The F tiD ^ h is vector of variation between the loading force 
and the axial force calculated from the stress distribution
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where F tz ^ h is the loading force, E nx1^ h  is unit vector and 
F tp
i ^ h is the axial force calculated from the stress distribution
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After the substitution of equations (9) and (10) into eq. (4), 
it can be obtained
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and after the substitution of equations (8) and (11) into eq. (3) is
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After the substitution of equation (3) into (1)
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The time stress distribution is obtained by discrete step by 
step solution. Starting step appears from non-loaded state, in 
each next step loading grows and eq. (1) is solved as long as 

i i1 #v v f-+ , if 0"f .

cross-section area. This increment will be added to the existing 
stress in the beam [5].

Fig. 1 Correction of the vector tL
i 1v + ^ h

The basic iterative equation for the calculation is

t t tL
i i

L
i1v v vD= ++ ^ ^ ^h h h,	 (1)

where i represents the iteration step, tL
i 1v + ^ h is vector describing 

the quasi-linear stress distribution on which the correction must 
be applied, tL

iv ^ h is the stress in the cross-section, tL
ivD ^ h 

is vector of the stress increments depending on loading values 
(internal values in the beam – bending moment Mo, axial force 
N). The next step is the correction of the vector tL

i 1v + ^ h in 
accordance with Fig. 1, i.e.
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The vector of the stress increments depending on loading 
values is described by 
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where tLM
ivD ^ h is the vector of the stress increments depending 

on bending moment and tL
i
NvD ^ h is vector of the stress 

increments depending on the axial force. These increments can 
be obtained like
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where Jz  is quadratic cross-section moment to the axis of 
z, S  is cross-section area of the beam, F tiD ^ h is vector 
of the difference between the loading force and the force 
calculated from the stress distribution in the beam cross-section. 
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2.3 3D generalization

In the case of 3D geometrical problem, the calculation starts 
from the equation (1) and the next step is a  correction of the 
vector tL

i 1v + ^ h by

t ti
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The vector of the stress increments depending on the loading 
parameters is described like
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where tLM
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yvD ^ h and tLMz

ivD ^ h are vectors of the stress 
increments from bending moments in y and z  axes. The 
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force, these increments can be obtained by equations
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where J
z
 and J

y
 are quadratic cross-section moments to the axis 

of z and y, y and z are discrete vectors of the beam´s height and 
width coordinates (Fig. 2).

Fig. 2 The vector components

The MozD  and MoyD  are differences between the loading 
moment and the moment calculated from the stress distribution 
in the beam cross-section,

Mo t Mo t Mo tz
i
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iD = -^ ^ ^h h h,	 (26)

2.2 Proposed model No. 2

The stress distribution in the beam made from an ideal elastic-
plastic material can be expressed using the continuous equation
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where R
e
 is yield stress, Lv  is linear stress, M

O
 is the bending 

moment and W
O
 is the bending cross-section modulus. Equation 

(14) describes the stress distribution in the beam’s cross-section 
depending on bending moment
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where i  is iteration step and MoD  is increment of the bending 
moment. The stress distribution in time is calculated by iteration 
equation

t t ti i i1v v vD= ++ ^ ^ ^h h h,	 (16)

where v  is the stress vector in cross-section and vD  is vector of 
the stress increments in the cross-section area,
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where tz
ivD ^ h is vector of the stress increments in the cross-

section (under load) and ti
ovD ^ h is vector of the stress 

increments in the cross-section (unloading). The tz
ivD ^ h can 

be calculated like
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where Mo t Mo ti iv D+^ ^h h6 @ is the stress vector obtained 
from equation (7) at the moment Mo t Mo ti iD+^ ^h h and 
Mo tiv ^ h6 @ is the stress vector obtained from equation (7) at 

the moment Mo ti ^ h. And
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where Mo tiD ^ h is the moment increment. After the substitution, 
the vector of the stress in the cross-section in the i+1 step will be
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Fig. 3 Analyzed model dimensions
	
The forces distribution in the x, y and z  axes are shown in 

Figs. 4 and 5.

Fig. 4 Axial force behaviour

Fig. 5 Forces behaviour in the y and z axes

Comparison of maximum and  minimum normal stresses in 
the particular loading steps is shown in Table 1. The stresses 
distribution monitored in the particular loading steps is shown 
in Figs. 6 to 9.

Comparison of maximum and minimum normal stresses	 Table 1  

Loading 
step v

v [MPa]

(Proposed model No.1 
MATLAB)

v [MPa]

(FEM software 
ADINA)

1
maxv 113.67 107.5

minv -116.4 -106.0

2
maxv 23.8 20.4

minv -26.3 -31.6

3
maxv 122.76 121.5

minv -123.52 -127.1

4
maxv 16.833 23.3

minv -17.18 -14.7

where Mo tzd ^ h is the loading bending moment to the axis 
of z  and Mo tzp

i ^ h is moment really transferred by the beam, 
calculated as
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The result equation for calculating tLMzvD ^ h will be
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In a similar way the equation for calculation tLMyvD ^ h can 
be derived, i.e.
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and
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where F tz ^ h is loading force, F tp
i ^ h is the axial force 

calculated from stress distribution
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After the substitution of equations (31) and (30) into eq. 
(23), following equation can be obtained
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Time stress distribution is obtained by discrete step by 
step solution. Starting step appears from non-loaded state, in 
each next step loading grows and eq. (20) is solved as long as 

i i1 #v v f-+ , if 0"f .

3.	 Numerical study

A  model of beam with bilinear material and proposed 
computational model No.1 (Fig. 3) was implemented in MATLAB 
and  compared with the more detailed FEM model created and 
analyzed in ADINA [12 and 13]. The beam was fixed at its one 
end and loaded at the other end.

	 The material parameters were: Young’s modulus 
.E 2 1 105$=  MPa, yield stress R 100e =  MPa and the 

hardening coefficient .0 1a = .
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Fig. 9 Normal stress distribution at the 4th loading step

5.	 Conclusion

The paper goal has been to present the study of new 
numerical approaches for plastic zones identification and residual 
stresses distribution in the cross-section area of the beams stressed 
above yield strength. The reason why this study was realized is to 
determine the stresses during the solution of the elastic-plastic 
structures state modelled by the beam finite elements.

According the authors´ opinion, the graphical presentation 
of the residual stress distribution in the beam cross-section after 
application of the higher number of cycles can be important 
information from the view of the bearing capacity and reliability 
of the analyzed objects.
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Fig. 6 Comparison of normal stress distribution at 1st loading step

Fig. 7 Comparison of normal stress distribution at the 2nd loading step

Fig. 8 Normal stress distribution at the 3rd loading step
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