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1.	 Introduction

Reliability has been considered as an important design 
measure in many technical systems [1 - 6]. A logic network is one 
of them [1, 4 - 6]. One of principal problems in reliability analysis 
of a  logic network is investigation of influence of breakdown 
of each gate upon the network failure [1, 5 and 6]. The system 
reliability modeling and calculation of reliability indices and 
measures are principal steps in such analysis.

A real system contains a lot of components. From reliability 
point of view, the system and all its components can be in one 
of two possible states: functional (presented as 1) and failed 
(presented as 0). The dependency between system state and states 
of its components is defined by the structure function [7 and 8]:
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where n is the number of system components, x
i
 is the state of 
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n
) is a vector of 

components states (state vector).
The structure function of many systems is monotonic. This 

means that there exists no situation in which the failure of some 
components causes the system repair. This type of systems is 
known as coherent. Coherency is a  typical property of many 
systems in reliability analysis. However, there exist some systems 
that are noncoherent [9] - [12]. Their structure function is non-
monotonic, which means that there exist situations in which the 

failure of some component results in system repair. The logic 
networks are typical example of such systems and, therefore, 
classical approaches of reliability engineering cannot be used in 
their analysis [12].

The structure function does not take the availabilities of 
individual system components into account and, therefore, it 
allows analyzing only topological characteristics of the system. 
When other aspects of system availability have to be studied, 
then the probabilities of working/non-working state of every 
component should be known:
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i
 + q
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 = 1.	 (2)

Probabilities p
i
 and q

i
 are known as the availability and 

unavailability of component i.
When the system structure function and availabilities of 

all system components are known, then system availability and 
unavailability can be computed as follows [7 and 8]:

	
A = Pr{z(x) = 1},   U = Pr{z(x) = 0},   A + U = 1.	 (3)

The availability is one of the most important characteristics 
of any system because it defines the proportion of time in which 
the steady-state system will be working. It can also be used to 
compute other reliability characteristics, e.g. mean time to failure, 
mean time to repair, some types of importance measures, etc. [7].
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A = Pr{F
o
(y; x) = F(y)}.	 (7)

Using relation between the system structure function and its 
availability (3), the structure function of a logic network with m 
outputs can be defined in the following way:

z(x; y) = F
o
(y; x) ↔ F(y),	 (8)

 
where ↔ is the symbol of logical biconditional and it can be 
interpreted in terms of vector logic functions as follows:

F
o
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where F

t
(y) is the t-th element of the vector logic function F(y), 

i.e. F
t
(y) represents the expected value of the t-th output signal, 

and F
t,o

(y; x) is the t-th element of the vector logic function F
o
(y; x) 

that defines the real value of the t-th output signal (t = 1,2,…,m).

B.	 Substructure Functions of Logic Network with Multiple Outputs
The structure function (8) and (9) allows analyzing the 

correlation between values of input signals and the correct work 
of the network (i.e. correct work of all outputs) on one side and 
correlation between activity of logic gates and the correct work 
of all outputs on the other side. However, it can also be useful 
to analyze these correlations with respect to only one output. 
Therefore, using notation (9), we can define m substructure 
functions:

z
t
(x; y) = {F

t,o
(y; x) ↔ F

t
(y)}, for t = 1,2,…,m,	 (10)

 
that describe the relation between the correct work of the t-th 
output and values of input signals and operability of individual 
logic gates.

Clearly, according to the previous paragraphs, the structure 
function of a  general logic network can also be defined in the 
following way:

z(x; y) = z
1
(x; y)/z

2
(x; y)/…/z

m
(x; y).	 (11)

According to the previous formula, the structure function of 
a logic network with multiple outputs can be simply derived from 
substructure functions of individual outputs.

C.	 Unreliable Logic Gates
Every logic gate realizes some logic function (e.g. AND, 

OR, etc.). However, this is true if the gate is functional. Now, 
assume that the failed gate in mathematical interpretation 
generates signals that can also be interpreted as values 0 or 1. This 
assumption implies that the broken gate realizes a logic function 
too, but it is different from the original one. Therefore, the failure 

2.	 Logic Network with Multiple Outputs 

In reliability analysis of logic networks, the studied system is 
a logic network of k logic inputs and n logic gates, which realizes 
a logic function:

F(y
1
, y

2
,…, y

k
) = F(y): {0, 1}k"{0, 1},	 (4)

 
where k is a number of input signals, y

l
 is the l-th variable of the 

logic function and it corresponds to the l-th input of the logic 
network, for l = 1, 2,…,k, and y = (y

1
, y

2
,…, y

k
) is a vector of input 

signals (input vector).
A lot of logic networks have more than one output and realize 

a  set of logic functions. Therefore, the general logic network is 
a realization of m-dimensional vector logic function:

F(y
1
, y

2
,…, y

k
) = F(y): {0, 1}k"{0, 1}m,	 (5)

 
where k is a number of input signals and m is a number of output 
signals.

With relation to reliability analysis, a  logic network has two 
different types of components:
•	 n logic gates – they can be working or failed;
•	 k inputs – they can be correct or incorrect.

In paper [12], there has been considered assumption that the 
input signals are always correct and, therefore, only logic gates are 
relevant system components. Using this assumption, the structure 
function of a logic network and the Structural Importance Measure 
(SIMs) of individual logic gates have been defined. However, they 
have been proposed for networks with only one output. Now, we 
concentrate on a logic network with m outputs.

3.	 Reliability Analysis of Logic Network with Multiple 
Outputs 
 

A. 	 Structure Function
The output of a real logic network is determined not only by 

values of inputs but also by proper work of individual logic gates. 
Therefore, the real output of a  logic network has to be defined 
by logic function F

o
(y; x) which takes into account not only the 

values of the input signals (input vector y) but also the states of 
logic gates of the network (state vector x) [5]:

F
o
(y; x): {0, 1}k+n"{0, 1}m,	 (6)

 
where k  is a  number of input signals, m is a  number of output 
signals, and n is a count of logic gates that are used in the logic 
network.

When the expected output F(y) and real output F
o
(y;  x) of 

a logic network are known, then its availability can be defined as 
probability that these two output signals have the same values [5]:
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Similarly, DPLD (14) can be defined for system substructure 
function as follows:
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Derivatives (13) – (16) are very similar, but there is 
a principal difference in their meaning and use. DPLDs (13) and 
(15) analyze the impact of the failure/repair of given component 
and, therefore, they can be used in importance analysis to find 
components with the most influence on the system proper work. 
On the other hand, DPLDs (14) and (16) are useful in the 
creation of test cases for detection of failed logic gates, because, 
when some gates are failed, then these DPLDs reveal situations 
in which the change of given input signal causes the change of the 
value of the structure function [12 and 14].

E.	 Structural Importance Measure
System availability (3) is very important measure that defines 

the probability that the system is working. However, it does not 
allow us to find the influence of individual system components 
on the system activity, i.e. to identify which components are the 
most important for proper work of the system. For this purpose, 
there exist other measures that are known as Importance Measures 
(IMs) [15].

One of the basic IMs is Structural Importance Measure (SIM) 
that estimates the topological influence of given component on 
the system work. For noncoherent systems, it is defined as the 
relative number of situations in which the change of system 
component state (component failure/repair) results in the system 
failure [11].

In paper [12], two types of the SIM for logic network with 
one output have been considered. The first one estimates the 
topological importance of given component when the exact values 
of input signals are known. This SIM is defined for given logic 
gate and given vector s of input signals as follows:
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where z

y  =  s
(x)  = z(x;  y  =  s)  = z(x;s

1
, s

2
,…, s

k
) and ρ(.) is the 

function that returns the number of state vectors for which the 
argument has nonzero, i.e. true value. For example ρ(x

1
0x

2
) = 3, 

because the logic function x
1
0x

2
 is true for 3 state vectors, i.e. 

(0,1), (1,0) and (1,1); ρ(x
1
x

2
) = 1, because the logic function x

1
x

2
 

has true value only for state vector (1,1).
The SIM (17) permits to identify which gates are the most 

important for given values of input signals, but, it does not allow 
analyzing the overall influence of given gate on the proper work of 
the network. For this purpose, another type of the SIM has been 
defined in paper [12]. Using the SIM (17), this IM is defined in 
the following way:

of a logic gate can be modeled as a change of function realized by 
the gate [6 and 12].

Consider a logic network of n logic gates. The i-th gate of the 
network realizes two different functions depending on the state 
(functional/failed) of the gate: (i) when the gate is functional, 
then it implements function f

i
(y), (ii) when it is broken, then 

it realizes function f
i,u

(y). Therefore, the unreliable logic gate is 
a realization of function f

i,o
(y; x

i
) [12]:

;y y yf x x f x f, ,i o i i i i u1 0=^ ^ ^h h h.	 (12)

When functions f
i,u

(y) are known for all logic gates of the 
network, function F

t,o
(y; x), which defines the real value of the t-th 

output of the network, can be obtained simply by replacement of 
every logic gate in the scheme of the network by functions f

i,o
(y) 

of individual gates and then the substructure functions (10) and 
the structure function (11) can be identified.

D.	 Direct Partial Logic Derivatives
Direct Partial Logic Derivatives (DPLDs) are part of logical 

differential calculus that has been developed to analyze dynamic 
properties of Boolean functions [13]. The structure function can 
also be interpreted as a Boolean function and, therefore, DPLDs 
can be used in reliability analysis [8].

In paper [12], two types of DPLDs of the structure function 
have been considered in the analysis of a logic network. The first 
one is defined as follows: 
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where z(a
i
, x; y) = z(x

1
, x

2
,…, x

i-1
, a, x

i+1
,…, x

n
; y), a, j ! {0, 1}.

DPLD (13) identifies situations when the failure/repair of 
given component results system failure/repair [8, 11 and 12]. 
However, the structure function of a  logic network depends 
not only on states of individual components (logic gates) but 
also on the values of individual input signals. Therefore, we can 
define another logic derivative that analyzes situations in which 
the change of given input results the failure/repair of the logic 
network:
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where z(x; a
l
, y) = z(y; y

1
, y

2
,…, y
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, a, y
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,…, y

n
), a, j ! {0, 1}.

These two DPLDs can also be defined for individual 
substructure functions of the system. In this case, DPLD (13) has 
the following form:
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and it can be used to detect situations in which the failure/repair 
of given logic gate results in the failure of the t-th output, i.e. 
situations when the real value of the t-th output is different from 
the expected one.
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Equations (19) define the expected values of the output 
signals. Now, we need to find their real values. This can be done 
simply by replacement of every logical operator using (12). So, we 
get the next formula for the first output:

;

XOR , ,
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where f

1,u
(y) represents the logic function that is realized by the 

1-st logic gate when it is failed and f
2,u

(y) represents the logic 
function realized by the failed 2-nd gate. Similarly, we can identify 
the real value of the second output.

There are different types of failures in logic networks [5 and 
16]. For the simplicity, assume that the failure of the XOR gates 
results that they will generate only value 1 regardless of the values 
of input signals while the failure of the AND and OR gates causes 
that they will generate only 0-signal on the output. Using this 
assumption, the real outputs of the adder are:
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 In the next step, the substructure functions z1
(x; y) and 

z
2
(x; y) can be identified by comparing functions F

1,o
(y; x) and 

F
2,o

(y;  x) from (21) with functions F
1
(y) and F

2
(y) from (19) 

according to definition (10) of the substructure function. After 
using some rules of Boolean algebra, the following equations can 
be obtained:
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The first (second) equation identifies all conditions that 
ensure that the first (second) output will generate the correct 
value. For example, according to the first equation, the first 
output is correct when both XOR gates are working x x1 2^ h, or 
the second XOR gate is working and values of the 1-st and 2-nd 
input are 1 and 0 respectively x y y2 1 2^ h, or the second XOR 
gate is working and values of the 1-st and 2-nd input are 0 and 1 
respectively x y y2 21^ h, or the second XOR gate is failed and all 
input signals have value 1 x y y y2 1 2^ h, etc.

The previous equations define the relations between states 
of individual logic gates, values of input signals and correctness 
of individual outputs and, therefore, they are useful for analysis 
of this kind of dependencies. However, they do  not allow us 
to evaluate the reliability of the network as a  whole. For this 
purpose, the structure function has to be found. This can be done 
using definition (11) of the structure function:

PrSIM y s SIM
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i y s

0 1 k
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,
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where {0, 1}k is the space of all possible input signals.

In the case of a  logic network with multiple outputs, 
definitions (17) and (18) can be used in two ways. Firstly, they 
can be used with the structure function (8) of the network. In 
this case, they have the same meaning as those proposed in paper 
[12] because they analyze the influence of given gate on the whole 
logic network. On the other hand, the structure function z

y = s
(x) 

in (17) can be replaced by the substructure function f
t,y  =  s

(x) =  
=z

t
(x; y = s) = z

t
(x;s

1
, s

2
,…, s

k
). In this case, SIM (17) will identify 

the influence of gate i on the correct value of the t-th output when 
individual input signals have values s

1
, s

2
,…, s

k
 and SIM (18) will 

estimate the total topological influence of component i  on the 
correct value of the t-th output.

4.	 Case Study: One-bit Full Adder

F.	 Structure and Substructure Functions
Consider a one-bit full adder that is implemented according 

to the scheme depicted in Fig. 1. It has three input signals where 
y

1
 and y

2
 represent bit operands and y

3
 represents a  bit carried 

from the previous less significant stage, and 2 outputs whose 
behavior is defined by functions F

1
(y) (an output bit) and F

2
(y) 

(a carry out bit).

Fig. 1. A one-bit full adder

According to the scheme in Fig. 1, the outputs of the adder 
are realized as follows:
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where symbol 5  denotes exclusive or (XOR).
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When the DPLDs and numbers of their nonzero elements 
are computed, then we can calculate the SIMs (17) for individual 
logic gates (Table 3).

Finally, using the probabilities in Table  1 and the SIMs in 
Table 3, the overall SIMs (18) of individual logic gates can be 
computed. These values are computed in Table 4.

SIMs of Logic Gates for Individual Input Signals	 Table 3

Vectors 
of Input 
Signals

SIM
1, y = s

SIM
2, y = s

SIM
3, y = s

SIM
4, y = s

SIM
5, y = s

(0,0,0) 0.5 0.5 0 0 0

(0,0,1) 0.625 0.375 0.125 0 0.125

(0,1,0) 0 0 0 0 0

(0,1,1) 0 0.25 0.25 0 0.25

(1,0,0) 0 0 0 0 0

(1,0,1) 0 0.25 0.25 0 0.25

(1,1,0) 0.125 0.125 0 0.125 0.125

(1,1,1) 0.1875 0.1875 0.0625 0.3125 0.4375

The Overall SIMs of Logic Gates in the One-bit Adder	 Table 4

Logic Gate SIM
i

x
1

0.167969

x
2

0.183594

x
3

0.042969

x
4

0.042969

x
5

0.089844

According to Table 4 the most important components of the 
one-bit full adder are the first and second XOR gate, i.e. gates 
1 and 2, while gates 3 and 4 (AND gates) have the smallest 

;x y x x x x y x x x x y y x x x y y

x x x x x x x y y x x y y
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x x x y x x x x y x x y

x x y y y y y y y y

y y

y

y y

y

y y x x

y y y y

1 2 3 5 1 1 2 3 5 1 2 1 2 3 1 2

1 2 5 1 2 5 1 1 2

2 3 5 1 2 1 2 3 5 1 2 3 5 1 2 3

2 5 1 1 2 3 5 1 2 3 1

2 5 1 2 3 2 3 1 2 3

4 1 2 3

1 2
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2 3

1

1 2 1 2 2 3

2 3 2 3

0 0

0

0 0 0

0

0

0

0

0

0 0

0

0

z =^ h

	 (23)

According to definition (3), the overall network availability, 
i.e. the probability that both outputs are correct, can be computed 
from formula (23) if the availabilities of individual logic gates and 
probabilities of individual values of input signals are known.

G.	 Topological Analysis of the One-bit Full Adder
Consider the one-bit full adder in Fig. 1. Using equations 

(17) and (18), the topological importance of every gate can be 
computed if the probabilities of values of input signals are known. 
For this purpose assume that the input signals have probabilities 
defined in Table 1.

When we want to analyze the topological importance of 
individual logic gates, the values of SIMs (17) have to be 
computed for every combination of input signals for every 
component. This implies that DPLDs (13) should be computed 
and, then, numbers of state vectors, for which the DPLDs are 
true, have to be identified. For illustration, these numbers are 
presented in Table 2 for the first 3 components.

The Probabilities of Individual Values of Input Signals  
of the One bit-Adder	 Table 1

Input signal Probability of value 0 Probability of value 1

y
1

0.5 0.5

y
2

0.5 0.5

y
3

0.75 0.25

Numbers of Nonzero Elements of Individual DPLDs		  Table 2

Vectors of Input 
Signals x 1 0

1 0y S

1 "

"

2

2
t
z =f ^
^

h
h p

x 1 0

1 0y S

1 "

"

2

2
t
z =f ^
^

h
h p

x 1 0

1 0y S

2 "

"

2

2
t
z =f ^
^

h
h p

x 1 0

1 0y S

2 "

"

2

2
t
z =f ^
^

h
h p

x 1 0

1 0y S

3 "

"

2

2
t
z =f ^
^

h
h p

x 1 0

1 0y S

3 "

"

2

2
t
z =f ^
^

h
h p

(0,0,0) 8 0 8 0 0 0

(0,0,1) 10 0 0 6 0 2

(0,1,0) 0 0 0 0 0 0

(0,1,1) 0 0 4 0 4 0

(1,0,0) 0 0 0 0 0 0

(1,0,1) 0 0 4 0 4 0

(1,1,0) 2 0 2 0 0 0

(1,1,1) 2 1 0 3 1 0
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function of the whole network that characterizes the network as 
a whole because it defines the dependency between proper work 
of logic gates and the correct values of all outputs. This structure 
function can be used to estimate network availability or to analyze 
the importance of individual logic gates for the proper work of 
the network.

The second ones are the substructure functions of individual 
network outputs. They define the correlation between the proper 
work of individual logic gates and the correct value of one output 
signal. These functions can be used to evaluate the influence of 
logic gates on the value of studied output signal and, therefore, 
they can be used in importance analysis or in creating scenarios 
for identification of failed logic gates.

In the last part of this paper, we focused on the use of the 
structure and substructure functions in importance analysis. 
We proposed the definitions of the SIM for logic networks with 
multiple outputs. Our definitions are based on logical differential 
calculus and they allow identify which components have the 
most influence on the proper work of the whole network or on 
the correct value of one concrete output signal from topological 
point of view. Although results of this paper have more theoretical 
significance, a  case study considered at the end of this paper 
indicates that our approach is useful and its further development 
and practical implementation could be beneficial for reliability 
analysis of logic networks. 
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influence. Therefore, we should focus on the XOR gates in other 
phases of reliability analysis.

5.	 Conclusion

Logic networks are special type of systems from reliability 
point of view because their structure function depends not 
only on states of their components (logic gates) but also on 
other characteristics that can be identified as the environment 
influence. This influence is included in input signals whose values 
do not depend on the network properties but on the environment 
in which the network is situated.

Most techniques of reliability engineering assume that the 
studied system is coherent. However, this assumption is not valid 
for logic networks because there can exist situations when the 
failure of some logic gate results that the network begin generate 
the correct output signal, while, before the failure, the output 
signal has been incorrect [12]. Therefore, the reliability analysis 
of logic networks is more complicated than analysis of other types 
of systems.

One of the principal steps of reliability analysis is identification 
of the system structure function. In paper [12], there has been 
proposed a  method for this task when the analyzed system is 
a  logic network with one output. That method is based on the 
assumption that a real logic gate is unreliable and, therefore, its 
output depends on whether it is working or failed. In this paper, 
we generalized this concept on logic networks with multiple 
outputs.

Two types of structure functions can be identified in a logic 
network with multiple outputs. The first one is the structure 
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