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1.	 Introduction

In general, a  wireless network with sensors is a  system 
consisting of spatially distributed autonomous devices using 
sensors to cooperatively monitor a variety of context conditions, 
such as temperature, vibration/frequencies, acceleration/pressures, 
fields, pollutants, at different locations. Critical characteristics of 
a wireless network with sensors are: the size scale of sensor nodes, 
harsh context conditions, mobility/portability, network topology, 
communication failures, adjustability of dynamic operationand 
large scale of deployment. Such systems with sensors can be used 
in a variety of contexts of use; environmental monitoring, medical 
monitoring, acoustic/fields detection, military surveillance, or 
process monitoring. 

In large surveys that carry on for extended time periods, it is 
very common to encounter the missing values problem. Measuring 
stations like the one under discussion, almost always comprise 
missing measurements. There is a  variety of reasons that cause 
this problem, including extreme weather conditions, information 
system failures, power shutdowns, rare and unpredictable events, 
malicious acts, sensor blockages etc. Most of these events appear 
randomly contrary to machine failures that appear more often at 
the early stages of the measurements. 

The proper treatment of missing values helps to address 
several concerns resulted by incomplete data. If there are cases 
with missing values which are systematically different from 
cases without missing values, the statistical inferences can be 
misleading. Moreover, missing data often decrease the precision 
of calculated statistical outputs since there is less information 
than originally designed. One more worry is that the assumptions 
behind many statistical procedures are based on complete cases, 
and missing values can complicate the theory required.

2.	 State of the art

In this work a  measuring station is described comprising 
sensors for different physicochemical parameters of thermal 
waters (for a  review of similar measuring stations see [1]). The 
station has been implemented for a particular hot spring located 
in Thermopiles, Greece. The factors that are continuously 
measured, using the constructed wireless network with sensors, 
are the concentration levels of radon in water, the water 
temperature to capture the flow rate and depth variations, PH 
to investigate the acidity variations, Redox potential to study the 
biologic load variations, and electrical conductivity as a measure 
of the salinity variations.
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on the likelihood under that distribution. Each iteration consists 
of an “E” step and an “M” step. The “E” step calculates the 
conditional expectation of the complete-data log likelihood given 
the observed data and the parameter estimates. In the “M” step, 
maximum likelihood estimates of the parameters are computed 
as though the missing data had been filled in. However note that 
the missing values are not being directly imputed. Instead, their 
functions are used in the log-likelihood.

The regression method instead computes multiple linear 
regression estimates. For every predicted case, the algorithms 
can even add a  residual from a  randomly selected complete 
case, a  random normal deviate, or a  random deviate from the 
t distribution. However this method and all its versions adopt 
the usual statistical criteria in model selection [2] which are 
designed to the target: find the model, wh ich “best”, under 
some distance criteria, fits the data. Since these criteria are, in 
principle, functions of the residual sum of squares [3] they can 
not address the need for the best prediction of the missing value. 
Nevertheless, these best fitting models are applied for prediction 
too, although these “distance” criteria were not designed for this 
purpose. 

3.	 Telemetric system and Outdoor Path Loss Models

The data collection measuring station transmits the digital 
data through a wireless radio network (using the radio modem). 
The receiver main unit for data processing was placed in the 
campus of Technological Educational Institute (ATEI) of Central 
Greece, Lamia, Greece. 

The wireless link between transmitter and receiver is 
considered to be Line of Sight (LOS). We assume that the 
transmitter collects all sensor data from a  local wireless sensor 
network protocol (ZigBee) and then proceeds to transmit all data 
to the main receiver at the campus of ATEI in Lamia. 

The status of the wireless channel characterization was 
studied on theoretical basis and the theoretical reliability was 
tested by performing a  scenario of outdoor measurements 
using the portable broadband measuring device Narda Selective 
Radiation Meter  -  SRM  3006. The measurement experimental 
scenario followed the guidelines of the recommendation ΕΛΟΤ 
ΕΝ 61566, IEC 61566 [26-02-1999]. Based on this analysis, the 
main technical characteristics of the transmitter output, receiver 
input and antennae electrical & electromagnetic characteristics 
were estimated. 

In order to estimate the average level of local mean strength 
at the receiver, we employed two different path loss models [4] 
- [6]. Antenna heights are considered to be sufficient to provide 
LOS and avoid blockage of local foliage. The terrain irregularities 
need to be accounted for, however, and these losses will be 
incorporated in a  zero-mean Gaussian variable (in dB) for the 
large-scale variations of the local mean value of the received 

This study reports a) the models that have been used in order 
to tune and optimize the telemetric module of the measuring 
station, b) a  novel statistical technique for handling missing 
values of the transmitted data, based on a new best for prediction 
general linear model technique and c) a detailed algorithm that 
realizes this mathematical method. In Appendix A the algorithm 
is described in pseudocode. . 

The measuring station has been designed and implemented 
under the framework of a research project; it is a major research 
program that has received so far two national and EU research 
grants. The whole project has as a main scope to design, develop, 
test and optimize a  novel system that integrates hardware and 
software modules capable to perform the required environmental 
measurements. It is also able to collect, maintain, transmit 
receive and store data. A second objective is to perform a modern 
statistical analysis of the data in order to understand their 
structure and capture the encoded information. Towards this 
scope we have developed, for the first time, an algorithm which is 
able to calculate the missing values for imputation based on a new 
best fitting polynomial designed to be the best as far as prediction 
is concerned. 

A  quite general architecture has been designed for 
the implemented platform. This platform includes also an 
independent source of energy via photovoltaic elements and 
a power management electronic module, see Fig. 1.

Fig. 1. The telemetric measuring station

In all telemetric measuring stations a crucial concern is how 
to minimize and consequently how to care missing values. The 
presented measuring station is an integrated system that was 
designed and adjusted after three evaluations in a way to minimize 
missing values for all the measuring factors from the sensors. 
However, it is always unavoidable such lost measurements to 
occur. Thus, it is important to fill in missing values. Common 
techniques that help impute missing values with estimated values 
are regression models or EM methods. The EM method assumes 
a distribution for the partially missing data and extract inferences 
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assumed and a medium-range LTE Base Station (BS) is assumed, 
with a  maximum transmit power of 38 dBm. Since the LTE 
receiver sensitivity level for band 3 is -91 dBm, our main interest 
is to investigate the boundaries of reliable signal reception for 
distances close to, and beyond, the estimated T-R separation. Free 
Space model is more idealistic whereas the Log-Distance model 
may be more pessimistic but provides a “worst-case assumption” 
which is important when planning such long-distance links. 

In our calculations, the antenna gain of the receiver unit was 
not included. The reason is that we want to provide estimations 
of the local mean value of the received signal at the “close 
proximity” of the receiver so as to provide numerical estimations 
without becoming dependent on the gain and directivity of 
receiver antennae. Results are depicted in Fig. 2 for both models. 
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Fig. 2. Local mean value of received power as a function of distance

Figure 2 confirms that a  dominant LOS component is 
essential for signal reception near the threshold. In the case 
of LOS propagation, where clearance of th 1st Fresnel zone 
is guaranteed, signal reception above receiver sensitivity level 
can be accomplished, thus allowing for a  significant signal 
enhancement if a directional antenna is employed at the receiving 
end of the link. It should be reminded that in Fig. 2 results do not 
include antenna gain since the detection of signal levels above 
the sensitivity level in the proximity of the receiving antenna is 
investigated. Log-normal excess path loss can be discarded in 
a  LOS-dominant propagation topology where the Free Space 
Model can provide reliable prediction of the local mean value of 
the received power (as a function of distance). 

If scattering losses or any other excess path loss that does 
not comply with the distance-dependent free space attenuation 
assumption need to be considered, then signal reception drops 
below sensitivity level for LTE (-91 dBm) and outage occurs. In 
this case, the BS needs to be wide-area instead of medium-range. 

In the case of low SNR region as the one examined in our 
case study, missing data can be a  common occurrence. The 
development of a robust mathematical method for mitigating the 
missing values problem is of great significance in establishing 
a reliable system of wireless telemetry.

power. For our calculations, the receiving antenna gain was not 
taken into consideration since we are interested in isolating the 
propagation phenomena from any possible variation of gains 
depending on whether an omni-directional antenna of low gain (2 
dBi) or a high-gain directional antenna (9 dBi) will be employed 
[7] - [12].

We calculated as a  sum of two independent processes: the 
distance-dependent path loss which is a deterministic loss due to 
free space propagation (provided by the idealistic Friis equation) 
[9], and the ‘excess path loss’, defined by Jakes as “the difference 
(in decibels) between the computed value of the received signal 
strength in free space and the actual measured value of the local 
mean received signal” [10]. 

The Free Space Model accounts only for the distance-
dependent losses whereas the Log-Distance model incorporates 
the excess path loss as well, which, in this scenario, since LOS 
is considered, stands for the losses due to terrain and other 
geographical irregularities.

The average path loss (in dB) is provided by the following 
formula [13] for the Free Space Model:

. log logP f MHz d km32 45 20 20L 10 10= + +^ ^h h	 (1)

The mathematical expression of the Log-Distance path loss 
model is given by [3]:

logL PL d N d
d

Xtotal 0 10
0

= + + v^ ch m 	 (2)

Where PL d0^ h is the path loss at the reference distance, 
usually taken as (theoretical) free-space loss at 100 m, for outdoor 
propagation scenarios, N is the path loss distance exponent and 
Xs is a Gaussian random variable with zero mean and standard 
deviation of σ dB. N and σ are derived from experimental data. 
During our work a coverage probability of 95% was assumed and 
thus:

.X z dB dB1 645# #v v= =v ^ ^h h	 (3)

Both models are suitable [1] for open areas unlike other 
models which are more practical for urban areas, such as the Hata 
and Okumura model [14] - [15].

In the case examined in this work, the path loss exponent 
assumes a  value of 2 so as to express the free-space distance-
dependent attenuation phenomena without incorporating any 
other losses. The zero-mean Gaussian variable is employed to 
express the ‘excess path loss’ and is set, in this paper, to a value of 
6 dB so as to reflect losses due to terrain irregularities.

The distance required for signal propagation (T-R separation 
is approximately 38 km) calls for the employment of specific 
wireless technologies such as WiMax or LTE. Since in Greece 
LTE is provided in band 3 (1800 MHz), our calculations will 
focus on that frequency band. A  bandwidth of 20 MHz is 
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theorems that follow. The first theorem [20] allows us to evaluate 
the β-expectation structural tolerance region. Instead of using the 
concept of tolerance region it is better to use its improvement, 
the so called β-expectation structural tolerance region. For central 
100β% of normal distributions being sampled it is given by the 
interval
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Here, tn p-  denotes the student distribution with n-p degrees 
of freedom, and finally

RSS Y T Y Tb b= - -
lt ta ak k	 (9)

The prediction distribution can be evaluated as well with the 
help of the same theorem.

A second important theorem [17] that is going to be used, provides 
for the linear model the β-expectation tolerance region Q(T, Y),  
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and 

IS T T T T Tm
* *1

= + -l l^ ^h h 	 (11)                              
 

with Fm, ,n p1 b- u  the bu  quantile of the F distribution with m and n-p 
degrees of freedom. Note that the matrix T* corresponds to the 
matrix of the input observations of the missing values.

The novel algorithm for the missing value problem we are 
a going to present is written in pseudocode. It is a modification of 
the algorithm described in [19]. It consists of five steps.

The first step is to define matrix Y. Y in our case comprises 
PH, Radon, Redox, temperature and conductivity. All missing 
values Y* have to be determined, as well as their corresponding 
time values. In the presented code in Appendix A, we place each 
of the five factors that are components of Y in one dimensional 
matrices. If there are some missing values we have just to omit 
them and continue consecutively keeping the time ordering. 
The values of time at which measurements were taken comprise 
matrix T. They have to be placed in a  list too. The time at 
which a measurement was lost, is omitted. In addition, the code 

4.	  Imputation of missing data

In this study we propose a  novel approach to the problem 
of missing values. Instead of applying the conventional linear 
regression models a  new method which selects the best for 
prediction fitting model is followed [16], [17], [18] and [19]. 
The derived models used for imputing the missing values are 
therefore models optimized for prediction. They can best predict 
on the average the value which lies on a  certain interval with 
some probability. This is achieved with the help of a mathematical 
quantity named beta expected tolerance regions. While the 
ordinary regression works with an extrapolation or interpolation 
of the best model fitting the data, the proposed technique lies 
on a  probabilistic concept and suggests that model which best 
predicts a missing value within experimental region. 

There are three distinct intervals in statistical analysis of 
data. For the problem of determining a  missing value fitting 
a  parameter to a  model, the accuracy or precision may be 
described as a  confidence interval, a  prediction interval or 
a tolerance interval which are quite distinct. 

Confidence intervals suggest how well the best-fit parameter 
determined by regression has been estimated. The crucial property 
is that confidence intervals provide information regarding the 
likely location of the true population parameter.  On the other 
hand prediction intervals are different. They inform where next 
value sampled is expected to be found. The important point is that 
the prediction interval concerns the distribution of values, not the 
uncertainty in determining the population parameter. 

The more demanding interval is the tolerance interval. It 
is defined on the basis of two percentages. The first percentage 
expresses “how sure” it is required the value to be and the second 
one represents what fraction of the values the interval will contain. 

In our case a general linear model (GLM) can be expressed 
as Y Tb vf= +  where Y Mn 1! #  is the observed vector of 
responses, T Mn m 1! # +^ h  is a  matrix of known constant time 
intervals based on the m input variables and M m 1 1!b #+^ h  with 
b  being a vector of unknown parameters. Moreover Mn 1!f #  
is an unobserved random vector of errors and 02 2v  unknown. 
Note that Ma b#  is the set of a b#  matrices. The unobserved 
random vector of errors f  satisfies E 0f =^ h , E Inff =l^ h  
with M0 n 1! #  a  vector of zeros and In ij ijd=^ h  is the unit 
matrix. In the contexts under discussion it is a  safe assumption 
that errors follow a  normal distribution with mean zero and 
variance 1. The coefficients b  that have been modeled as a vector 
are determined by the least squared method. This is allowed due 
to the Gauss – Markov theorem. The least squared estimators will 
be determined from

 
T T T Y1b = -l lt ^ h 	 (4)

 
where from now on, Y denotes a  given realization of Y. The 
proposed algorithm is based on two strong and rich in content 
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The applied algorithm differs nontrivially from all other 
methods that impute missing data with a  distance criterion. 
Furthermore, it was tested that it suggests in many cases different 
values than those derived with the ordinary methods. The 
numerical study of this methodology proved that the algorithm, 
which chooses a  polynomial model according to the best 
prediction criterion, does not have the disadvantage to select the 
largest order polynomial, as the best model. This is a well known 
problem associated with methods using distance criteria. Finally, 
data analysis with respect to the proposed method showed that for 
data with large dispersion, the estimated missing data are different 
from the values suggested by an RMS criterion.

5.	 Discussion

For the LOS wireless system a study was performed in order 
to find out the link budget parameterization. Local mean values 
of the received signal at the “close proximity” of the receiver 
(without considering any specific antenna gain for the receiver 
unit) is found to be approximately equal to the receiver sensitivity 
level of -91 dBm, if free space (distance-dependent) losses are 
considered. If terrain and/or foliage irregularities are taken into 
considered in a generic assumption of a 6 dB shadow depth, then 
the local mean value of the received signal suffers an additional 
attenuation of approximately 10 dB, resulting in a  value below 
-100 dBm. Since we have already assumed a  worst-case path 
loss of 150 dB [21], all possible attenuation scenarios have been 
accounted for. 

Site-specific measurements and a more thorough investigation 
of plantation, foliage, and their effect on signal propagation with 
regard to variable antenna heights will validate the robustness of 
each assumption. Furthermore, the use of a high-gain directional 
antenna at the receiver unit will provide the necessary signal 
enhancement (in the order of 9 dB) so that the signal will be well 
above the sensitivity levels. Finally, it should be noted that the 
maximum transmit power of 38 dBm concerns a medium-range 
LTE BS that applies for micro-cell scenarios. LTE specifications 
explicitly provide a  macro-cell (suburban-open areas) option of 
a  wide-area BS where no upper bound in maximum transmit 
power was considered (and will be subsequently provided by 
local and/or regional band regulations by respective authorities). 
Therefore, our calculations simply provide scenarios that range 
from sub-optimal to worst-case in order to test the robustness of 
signal propagation under specific conditions, leaving room for 
improvement on both transmitter and receiver side, as well as 
addressing issues for future work in the channel characteristics, 
as heralded by other published works [22] - [24].

normalizes data T in the interval [-1,1] and the transformed data 
are placed in the list named “T’TRN”.

The second step comprises the evaluation of the vector i  
with the estimators of GLM model of p-th order polynomial. For 

every p=0 to k we should evaluate from Eq. (4), estimators bt .

The third step is about the determination of the largest 
volume of the β-expectation tolerance region since this is the 
worst case of the input variables set, as far as prediction concerns. 
Then, in the fourth step we find the minimum β-expectation 
tolerance region among the worst models. This model with min 
β-expectation tolerance region is also the best one. 

Therefore, in the third step we have for all p=0 up to k, to 
define matrices T ,o p  from Eq. (6). In the presented realization 
of the algorithm we have set k=10. Furthermore, it is essential 
to evaluate the length L

p
 at the point to . Following (5), (10) and 

working for the one variable degree polynomial the length of the 
tolerance region can be derived equal to

L t t n p RSS

I T T T T T T

2p o ; /
/ /
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/

n p 1 2
1 2 1 2

1 1 1 2
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with the point t0  being the point that gives maximum value as 
follows

Max T T T T, ,o p o p
1-l l^ h6 @ with t1 1# #- 	 (13)

The pseudocode names as “LTR” the length of the tolerance 
region Eq. (12) while expression named “quantity” is the one that 
has to be maximized at time to . 

The fourth step is realized with a loop that runs from p=0 to 
as much as 10 in the function named “ORDER”. This function 
chooses the minimum of the stored maximum “lengths” and 
finds the corresponding p value which is the degree of the 
response function for the best predictive model. It also compares 
the best predictive model with the ordinary best fitting model 
finally, evaluating RMS RSS n p 1= - - . The best fit 
model according to the conventional method is the one with the 
minimum RMS.	

The fifth and final step refers to the evaluation of all the 
missing values based on the best predictive model. This becomes 
possible with the help of the code calling the function named 
“MISSINGVALUES”.

For all measured quantities the proposed method was 
applied for evaluating the missing values according to the best for 
prediction polynomial. This was done for several different time 
durations. Results reveal that for many datasets the best fitting 
for prediction polynomial is different from the one suggested 
from ordinary methods with distance criteria like RMS, and 
therefore, the imputation of missing values is different as well. If 
the designer of an experiment is interested in correct predictions 
then the discussed method gives distinctive and correct results.  
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Appendix A
The present section, presents the pseudo-code that realizes 

the algorithm.
(*Here we set data for matrix T. The time intervals that 

correspond to the missing data should be omitted, for example 
{1,2,3,4,6,7,8} for a missing value at t=5*)
1. 	 Set an one dimensional matrix TIME`INTERVALS with 

elements consecutive integers that represent the time intervals 
at which measurements were performed

	 (*Here we set all data for matrix Y which in our example 
concerns radon, PH, conductivity or OPR. *)

2.  	 Set an one dimensional matrixY  that consists of all time 
ordered measurements of factor Y omitting the missing values 

3. 	 Define the function/routine that estimates the t student 
distribution probability density function for the relevant 
tolerance region 

	 tst[n_] := Sqrt[-n + (1/n*(0.05*(Sqrt[n]*Beta[n/2, 1/2]))^ 
(2/(1 + n)))^(-1)];
(*Here we transform adequately the data*)

4. 	 Set to variable T`TRN a  normalized value in the interval 
(-1,1) i.e.  

	 T`TRN := (TIME`INTERVALS  - A)/B; 
5. 	 Set variable “n” as the number of all time intervals
6. 	 Calculate in variable A and B the quantities A := 1/2 (UU + 

DD);
	 B := UU - A;
7.	 Estimate the minimum and maximum values of time intervals 

and set them in variables DD and UU respectively 
	 DD = Min[TIME`INTERVALS];UU = 

Max[TIME`INTERVALS ];
8. Set a  2 X N  “TRNdata” matrix with first column the 

transformed time intervals and second column the relevant Y 
factor.  N is the number of all time intervals. 

	 (* the main code*)
9. 	 Define the coefficients T[0],T[1],…T[10] of the ten 

polynomials which will be tested with both criteria
	 T[0] := {1}
	 T[1] := {1, T`TRN
	 T[2] := {1, T`TRN, T`TRN^2}
	 …
	 Set each of the 10 polynomials of order “i”  

Top[i]=1+t+t^2+…t^i
10. 	Set the quantity that should be maximized, see Eq.(13)
	 quantity := TopT. (TT.T)-1.Top;
11. Define a  subroutine function “Maximize” which finds the 

value of t inside the normalized region[-1,1] that maximizes 
distance “quantity”

12. 	Define the useful expression EXPR, see equation (7), which 
is used in the definition of the “probabilistic length” Lp

 	 EXPR := [1 - TopT. [TT.T + Top.TopT]-1. Top]-1;
13. 	Define the useful quantity “bi” that is used in the definition of 

the criterion RMS
bi := [TT. T]-1.(TT.Y);

6.	 Results

The testing of the proposed algorithm with the measured 
data reveals an affirmative conclusion for using the proposed 
method. There is a strong theoretical background [16], [17], [18] 
and [19] that ensures the success of the method to any applied 
field. It was found that for several datasets the proposed novel 
method for missing data imputation differs non trivially from 
the other existing methods. In the present study a  three cycles 
evaluation scheme was selected for the adjustment of the whole 
measuring station including the sensors, the control unit as well 
the transmission and the data recorder. The first and second 
evaluation periods lasted 25 days each. The third evaluation 
period lasted 30 days. These three time periods were consecutive 
started on March 2014. During the first period we had 2.3%, 2.5% 
, 3.4%, 0.5% and 2.8% of missing values for PH, Radon, Redox, 
temperature and conductivity respectively. In this first period 
there was a  two days out of operation time duration that was 
excluded. In the second period we had 2.1% , 2.9%, 2.3%, 0.3% 
and 3.8% of missing values for PH, Radon, Redox, temperature 
and conductivity respectively while in the third period we got 
2%, 1.9%, 2.4%, 0.3% and 1.9% missing values. Utilizing the 
developed algorithm we managed to impute the missing values 
in all the fifteen time series referring to the measured five factors 
of these three evaluation periods. The derived best for prediction 
polynomials each for every one of the five factors were then used 
to model the time evolution and calibrate the measuring station 
for best performance. The reliability of the measurement of each 
factor and the reliability of the whole measurement process 
were evaluated. The reliability (intraclass correlation coefficient, 
average measures at 95% CL) of the third period of evaluation 
reached 0.83, 0.77, 0.84, 0.95 and 0.75 for PH, Radon, Redox, 
temperature and conductivity respectively. In addition, using the 
derived best fitting polynomials we were able to calculate various 
statistical inferences regarding trends, and correlations which will 
be part of a larger statistical analysis of the measurements. 

For research programs under the scope to utilize data for 
making safe and scientifically concrete predictions, it is not 
considered reasonable and appropriate to build models based 
on curve fitting as closely as possible to the data. Instead, it is 
desirable for the model to be determined by a  curve that fits 
data with the help of a  best fit polynomial for the prediction 
of the Y value for a certain X (within the experimental region), 
establishing a specific degree of high probability.

It would also be interesting as a future research to generalize 
the proposed method for problems with multiple independent 
variables or for cases like [25] and [26]. Another interesting 
investigation is to develop an algorithm capable to handle both 
time series analysis and missing data imputation.
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18. 	Define the subroutine/function that returns the missing value, 
the order of the best fitting polynomial used for estimating the 
missing value and the minimum tolerance length. The user 
sets as first argument the time that corresponds to the missing 
value and the largest order of the polynomial to be tested

	 Set the time of missing value in the variable “timeofevent”
	 Calculate tt = (timeofevent  - A)/B; 
	 Set the maximum order of the polynomials to “nn”
	 START LOOP 
 	 For i=0 to nn
	 Find the value t and name it “maxquant” that maximizes 

“quantity”
	 maxquant := Maximize[quantity, {respecting constraint  

-1 <= t <= 1}] ;
	 t =  maxquant; LTRmin := LTRR[0] 
	 order := i ;
	 IF  LTRR[i] <= LTRmin; THEN  LTRmin := LTRR[i] 
	 t = tt; 
	 MISSINGVALUE = Top[order]T.bi;
	 Print[ “MISSING VALUE=”, N[MISSINGVALUE], 
	 “ order of best polynomial=”, order, “  minimum LP=”, 

LTRmin] 
	 END LOOP
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14.	 Define the quantity RSS (see equation (9)) used in the 
definition of the criterion RMS

	 RSSp := [Y - T. bi]T . (Y - T. bi);
15. 	Define the quantity”LTR” which is the length of the tolerance 

region and it is evaluated for the t that maximizes “quantity”. 
This is the prediction criterion

	 LTR := 2*tst[n- i] *(n - i - 1)^(-1/2) 
*((EXPR)^(1/2))*(RSSp)^(1/2);

16.	 Define the expression that gives the conventional RMS 
criterion for best fitting model

	 RMS := RSSp/(n - i - 1);
17. 	Define a subroutine/function returning a report order by order 

which provides justification about the best fitting polynomial. 
The user must set as an argument for this function the largest 
order of the polynomial to be tested. The maximum possible 
order that can be selected is 10. The prediction criterion LP 
and the conventional criterion RMS are estimated for each 
order of the polynomial. In addition the function returns for 
each order of the polynomial the plot of the data together 
with the best fitting polynomial for prediction.

	 START LOOP 
	 For i=0 to n Maximize[quantity, -1 <= t <= 1}, t] ]; 
	 g1 = ListPlot[TRNdata]; 
	 g2 = Plot[TopT.bi, in the interval {t, -1, 1}];  
	 Print[TopT.bi]; 
	 Find the value t and name it “maxquant” that maximizes 

“quantity”
 	 maxquant := NMaximize[quantity, {respecting the constraint 

-1 <= t <= 1}] ; 
	 Print[“RMS=”, RMS]; 
	 Set  t =  maxquant; 
	 Print[“LP=”, LTR]; 
	 Print[Show[g1, g2, PlotRange -> All]]
	 END LOOP
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