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1.	 Introduction

A voltage controlled oscillator (VCO) is one of the important 
basic building blocks in analog and digital circuits. For example, 
a  VCO is the main building block in phase locked loop (PLL) 
and clock generator circuits [1]. This paper presents the design 
of 2 types of oscillators that are continuously voltage tunable. 
The frequency changing for all oscillators is based on optically 
coupled photoresistor (Vactrol) with 100 dB dynamic range [2]. 
The first is Wien-bridge oscillator with frequency range from 
approx. 0.1 Hz to 250 kHz with sinusoidal output. The Vactrol 

is used also for amplitude stabilization. The second oscillator is 
relaxation oscillator based on digital circuit with frequency range 
from 10 Hz to 9 MHz with square wave output. It is important 
to note that the control voltage and oscillator part are optically 
coupled.
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Fig. 1 The optically coupled photoresistor - Vactrol
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Fig. 2 Output resistance vs. input current for VTL5C1
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where k
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 is OR constant and i
d
 is current through OR LED diode. 
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Measured output frequency vs. input voltage is shown in  
Fig. 4. The frequency spectrum is shown in Fig. 5 (spectral quality 
is better than 50 dB). 

 

Fig. 4 Output frequency vs. input voltage for Wien-bridge oscillator

Fig. 5 The frequency spectrum of voltage controlled Wien-bridge 
oscillator

2.	 Optically coupled photoresistor characteristic

Vactrol consists of a LED diode and photoresistor (Fig. 1). 
A photoresistor or light-dependent resistor (LDR) or photocell is 
a resistor whose resistance decreases with increasing light intensity. 
Optically coupled photoresistor (OR), also called photoresistive 
opto-isolator or Vactrol (after a trademark introduced by Vactec, 
Inc.) offers 100dB dynamic range, fast response time, and very 
high dark resistance. Some technical parameters for VTL5C1 [2] 
are: Min. isolation Voltage @ 70% Rel. humidity: 2500 VRMS; 
Max. resistor power: 175 mW; Max. resistor voltage: 100 V; Max 
LED current: 40 mA; Response time to 63% final R

ON
 2.5 ms. The 

measured output resistance vs. input current is shown in Fig. 2 
(logarithmic scales are used for both the X and Y axes). 
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Fig. 3 The Voltage controlled Wien-bridge oscillator with buffer 
amplifier. R

1
=1k; C=1n; R

2
=10k; R

3
=15k; R

4
=10k; R

5
=1k; R

6
=R

7
=10k; 

OA-TL074; D - 4x Schottky diodes, OR
1
-OR

3
 optically coupled 

photoresistors VTL5C1.

3.	 Wide range voltage controlled Wien-Bridge oscillator

The voltage controlled Wien-bridge oscillator [3 - 5] is shown 
in Fig. 3. The operational amplifier OA

1
 is used to form voltage 

controlled current source. The current i
D
, flows through diodes D

1
 

and D
2
 of the OR

1
 and OR

2
. The output current is

i R
V

D
i

1
=          [A, V, W]	 (1)
 

where V
i
 is input voltage and R

1
 is resistor connected to inverting 

input. 
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and block k

B
 (in Fig. 6) is used for the balancing of different 

values of a
1
 and a

3
. In Fig. 7 the block diagram of compensated 

integrator is shown (top) and compensated integrator with OA 
(bottom). The compensated integrator with OA can be described 
by eq. (7) where R

4
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d
) is photoresistor controlled by current i

d
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4.	 Amplitude control in quadrature sinusoidal oscillator

In this part another principle of the amplitude control of the 
quadrature sinusoidal oscillator is used. The block diagram of 
the quadrature oscillator with amplitude (energy) stabilization 
is presented in Fig. 6. The method is based on compensation of 
the parasitic dissipation parameters -a

1
 and -a

3
 by the multipliers 

connected in parallel along the dissipation blocks [6 and 7]. 
Desired value of the amplitude A of the oscillator signals is fed 
into the amplitude control block. The quadrature outputs of the 
oscillator (x

1
 and x

2
) are also connected to the amplitude control 

block. Amplitude control is based on eq. (5) where ideal steady 
state is
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The amplitude is affected by means of PI (Proportional-
Integrated) controller and multipliers controlled by x

3
.                           

Fig. 6 Block diagram of the amplitude control for quadrature oscillator 
with compensation of dissipations 1a  and 3a . Controller for amplitude 

control is based on PI controller

Fig. 7 The block diagram of amplitude control (top) and construction 
with optically coupled photoresistor (parasitic resistor R

D
  

is compensated)
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5.	 Wide range voltage controlled relaxation oscillator

The relaxation oscillator uses one Schmitt trigger capacitor 
and resistor [8 - 11]. The circuit diagram of voltage controlled 
relaxation oscillator with output buffer is shown in Fig. 9.

The output frequency vs. supply voltage (with fixed V
i
=13 

[V]) is shown in Fig. 10. The output frequency vs. input voltage 
(with fixed V

CC
=15 [V]) is displayed in Fig. 11.

Fig. 11 Output frequency vs. input voltage for relaxation oscillator  
with Vcc=15 [V] (solid line), approximation – dash line
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Fig. 12 The circuit diagram of linearized, relaxation oscillator with 
output buffer. R
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- Schottky diodes, OR - optically coupled photoresistors VTL5C1

 
Fig. 8 Frequency spectrum of proposed oscillator (with compensation  

of the dissipation)

The frequency spectrum of quadrature oscillator with 
dissipative parameters compensation is shown in Fig. 8.
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Fig. 9 The circuit diagram of relaxation oscillator with output buffer. 
R

1
=1k; C=56 pF; OA-TL071; IC

1
- CD40109, OR - optically coupled 

photoresistors VTL5C1

Fig. 10 Output frequency vs. supply voltage for relaxation oscillator  
with constant V

i
=13 [V] (solid line), approximation – dash line
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Output frequency vs. input voltage of the linearized oscillator 
is displayed in Fig. 13. Measured values are in Table 1.

6.	 Conclusion

In this paper the 2 wide range simple V-f oscillators 
were described. For frequency control, the optically coupled 
photoresistor was used. The first is Wien-bridge oscillator with 
sinusoidal output with spectral quality greater than 50 dB. The 
second is linearized relaxation oscillator. All oscillators were 
constructed and measured. It is important to note that these 
oscillators can be used in different applications including PLL, 
frequency locked loop and low cost frequency synthesizers. 
The new method for amplitude control of sinusoidal quadrature 
oscillators with high spectral quality based also on optically 
coupled photoresistors and PI controller was also described.
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Fig. 13 Output frequency vs. input voltage for linearized relaxation 
oscillator (see Fig. 12). Measured values – solid line, approximation – 

dash line
 
The circuit diagram of linearized relaxation oscillator with 

output buffer is shown in Fig. 13. Linearization is based on supply 
voltage increasing together with input voltage. The OA

2
 is used 

as power source for V
i
 ≥ 2.3 V. The supply voltage is given by 

eq. (10):
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Measured values of output frequency versus input voltage for linearized relaxation oscillator	 Table 1

V
i 
[V] 2 3 4 5 6 7 8 9 10

f
o
[MHz] 0.12 0.9 1.7 2.6 3.5 4.3 5 5.8 6.4
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