
48 ●	 C O M M U N I C A T I O N S 1 / 2 0 1 6

R E V I E W

1.	 Introduction

In order to reduce costs for maintaining communication
systems, both physical devices and services running on
them, many companies make a decision on moving the
service infrastructure to cloud service providers. Nevertheless,
during the movement of infrastructure to third-party several
questions might arise. Services in cloud infrastructure were
designed to be used for everyone, but they usually lack the
broad configurability. In addition to these issues, the security
questions have to be resolved, since the infrastructure is
not under the control. During the years of development,
a platform to address the mentioned issues has been created
[1]. Among desired characteristics belongs an easy integration
of such device into almost any computer network. In mid of
2011, a new project (BESIP) was established under strong
support of the CESNET association (Association of Czech
universities and Academy of Science), aiming at a robust
and secure VoIP telephony infrastructure with additional
key components that make this solution easily adaptable
and configurable even without the deep knowledge of the
technologies used by the components. It also aims to be
a scalable solution with the unified configuration in mind [1].
The given name BESIP has had to be changed to BEESIP (The
Bright Efficient Embedded Solution for IP Telephony) in 2014
because our BESIP trademark registration was rejected by

the Czech Industrial Property Office due to the same existing
trademark in field of public transport. In last two years, next
important features have been implemented, and the automatic
provisioning belongs to them. Soon after being ported Asterisk
to OpenWrt Linux distribution within BEESIP project, we
became responsible for maintenance of Telephony repository
in OpenWrt, it includes any packages and patches which are
connected with telephony.

2.	 Related work

As mentioned in the introduction, we discuss the
implementation of a SIP communication server solution which
would be an alternative to several current implementations.
The main advantage of our solution is the ability to easily and
quickly set up a full-featured PBX on almost any hardware.
We can presume that almost all implementations are based
on open-source Asterisk PBX, web-interface for Asterisk
and with a GNU/Linux distribution on the base layer. At
present, there are several projects that offer multipurpose IP
telephony solutions for embedded devices and for household
or enterprise platforms [2 and 3]. The initial project of
a GNU/Linux distribution which offers an easy set-up of IP
telephony in a few steps is the Asterisk@Home project. The
first version of this project was released on 29 April 2005.

AUTOMATICALLY PROVISIONED EMBEDDED COMMUNICATION
SYSTEM BASED ON OPENWRT PLATFORM
AUTOMATICALLY PROVISIONED EMBEDDED COMMUNICATION
SYSTEM BASED ON OPENWRT PLATFORM

Jiri Slachta - Miroslav Voznak - Dan Komosny - Homero Toral-Cruz - Peppino Fazio *

The article deals with a design of a system that provides tools for creation of automatically provisioned embedded communication system
and its components. As the key feature of the BEESIP platform (Bright Efficient Embedded Solution for IP Telephony) a unique building and
provisioning system of the network devices has been developed allowing the administrators to fully control the firmware and configuration of
the devices even in the remote and inaccessible locations. The process of custom firmware building and device provisioning eases the mass
deployment of the BEESIP based hardware to cover the needs of small to medium business in the vast range of services.

Keywords: BEESIP, SIP, IP Telephony, RTP, Asterisk, Kamailio, Snort, OpenWrt.

*	 1Jiri Slachta, 1Miroslav Voznak, 2Dan Komosny, 3Homero Toral-Cruz, 4Peppino Fazio
 	 1VSB-Technical University of Ostrava, Czech Republic
	 ²Brno University of Technology, Czech Republic
	 3University of Quintana Roo, Col. del Bosque, Mexico
	 4University of Calabria, Arcavacata di Rende, Italy
	 E-mail: jiri.slachta@vsb.cz

https://doi.org/10.26552/com.C.2016.1.48-55

49C O M M U N I C A T I O N S 1 / 2 0 1 6 ●

R E V I E W

targeting on. The secondary part of BEESIP is the OpenWrt
Linux distribution which uses packages that provide desired
functionality. In this case to provide modules from packages
that serve as PBX, monitoring system, security system,
management system and the core connecting modules among
themselves. In almost each home and small office there has been
distributed and deployed embedded networking equipment for
routing the Internet connection, providing multiple media
services and securing the network behind the device. Despite
the fact that there has been some focus on the security of
network itself, those devices have received small attention to
prevent the attackers to abuse the open vulnerabilities on such
equipment. The absence of computational capacity on such
devices is also another fact that has to be resolved to prevent
denial of service. The solution of security in BEESIP is based
on SNORT application with cooperation of SNORTSam
and iptables [8 and 9]. In addition to preventing multimedia
systems being unusable during DoS attacks the system has to
protect itself. For limiting and blocking the attacks over VoIP
traffic the ratelimit and pike modules from Kamailio package
are used. The architecture of BEESIP system focuses mainly
on providing multimedia services, such as IP telephony.
Administrators of this service have to ensure if the content
is delivered reliably, securely and the voice traffic should
also follow given quality parameters as well due to an impact
of background traffic on speech quality [10 and 11]. In
the beginning of the project the first version of monitoring
system was proposed [12]. For monitoring purposes the
measurements of IP telephony traffic are achieved directly on
the device. This solution exploited a tshark package and our java
application interpreting the results from tshark. This one-time
measurement gives information about particular speech quality.
However, this solution providing one-time measurements was
not robust enough. To address the anomalies in the network
infrastructure the successor of the previous application has
been made. Nowadays, the monitoring module works as an
agent in the system which provides continuous monitoring
evaluated immediately on the monitoring server and our work
in this field received a best paper award at 22nd International

This project integrated a web interface for Asterisk, Flash
Operators Panel to control and monitor PBX in real-time and
also offered a full FAX support within one bootable image for
almost any x86 PC. On 3rd May 2006 the development of this
project was discontinued and was replaced by its successor
Trixbox. However, the development of Trixbox does not seem
to continue any more. Two existing projects - AsteriskNOW
and Elastix – now offer an alternative to Trixbox. The former,
AsteriskNOW appears to be similar to Trixbox – a packed
GNU/Linux distribution with Asterisk with a FreePBX web
interface on top of it. The latter, Elastix, is a bit more
modular. Compared to any other project, it offers a slightly
more modular hierarchy to facilitate the applicability to
a multiple service server [4 and 5]. The increasing popularity
of embedded devices, such as Raspberry Pi, is the reason
why the Micro Elastix distribution was born. However,
all of those projects are either prepared for x86 machines
only or for specific hardware. Micro Elastix only supports
three platforms, namely PICO-SAM9G45, MCUZONE and
Raspberry Pi [6].

None of the projects includes a security module that
would offer a complete IPS and IDS system to prevent attacks
against the SIP Registrar server. Also, there is no module that
would monitor the quality of voice calls transmitted through
an integrated PBX [2 and 7]. Thanks to the portability of the
OpenWrt distribution we prepare a BEESIP bootable image
for almost any device.

3.	 Platform architecture

One of the biggest challenges during BEESIP development
was to create or modify any existing Linux distribution to
serve our expectations. We needed to create an environment
that would be fully customizable to any purpose and also to
be easily maintainable through the time the BEESIP would
be developed. The choice of Linux distribution, we wanted
to modify, fell on OpenWrt Linux distribution. The reason,
why we chose that system, was the approach for building
firmware, the toolchain, cross-compiler and all applications
are downloaded, patched and built by scratch. It means that
OpenWrt does not contain any source code, it does only have
its build system with templates, patches and Makefiles with
procedures how to build a system and its packages for targeted
device. This approach allows us to create custom procedures
for build system and packages that can be modified at any
stage. A simplified view on BEESIP architecture is depicted in
Fig. 1 which describes how the architecture is designed.

The first block, the build system, is a wrapper on the top
of the OpenWrt build system. It is designed for easy creation
of firmware images within the single text file which describes
what should be built for specific architecture and device we are

Fig. 1 Architecture of BeeSIP system

50 ●	 C O M M U N I C A T I O N S 1 / 2 0 1 6

R E V I E W

automated building system images for any device or platform
supported by OpenWrt. Those could be firmware images for
campus access points, specialized network probes, virtualized
multimedia servers or any other devices.

5.	 Core module

The role of the Core module is to provide a glue among
all services that served by all BEESIP modules. The most
important part of the Core module is the BEESIP shell library
that provides functions for all utilities and scripts used by
BEESIP system. Functionality of a Core module complements
utilities for configuration management and for simplified
configuration of system image. With all those utilities comes
along also default configuration which prepares all module
services into fully functional state with all BEESIP modules
running and operational. Also, the role of this module is
to switch any existing OpenWrt environment to BEESIP
environment while the device is booted the first time or the
BEESIP environment is used and ran the first time.

5.1. BEESIP telephony environment

Since IP telephony in the Czech national research and
education network is highly developed and we interconnected
via VoIP nearly all PBXs’ of Czech universities 15 years
ago [12], we keep information about academic network
infrastructure (more than 50 VoIP Gateways and PBXs
behind them). The project BEESIP should draw benefits
from its nature. Each participant of this network stores the
data about their VoIP gateways in the IPTelix system, which
is the database for the VoIP gateways connected to the Czech
academic research and education network. The main focus
of the system is to maintain and to monitor prefixes to the
gateways. The data are provided from the database in the
JSON format, our scripts in BEESIP automatically prepare
configuration files for internal Asterisk and set up the outgoing
traffic to establish trunks against these gateways. To identify
the VoIP traffic the data from BEESIP UCI configuration
file are obtained and subsequently the IP telephony prefixes
and the numbering plan is set up. Phone provisioning tool,
which is connected to internal Asterisk in the system, creates
phone provisioning data according to the type of the phone
connected to it.

Science Conference on Computer Networks [13]. The rest of
the monitoring functionality is handled by the Zabbix agent.
The described modules deliver heterogeneous services which
have to work in conjunction with each other. The last part
of the system are core services that provide abstraction layer
on the top of the modules. It is represented by a shell library
(providing functions for scripts) with executable files to make
the system working. As a configuration provider we developed
UCI provisioning client that prepares the configuration for
the system.

4.	 Build system

Before the concept of BEESIP system is described, it
is necessary to introduce the build system which reduces
the building procedure into one script call. As said above,
BEESIP is based on GNU/Linux distribution OpenWrt which
is built on top of the OpenWrt Buildroot. Buildroot is a set of
Makefiles and files that allows to compile cross-compilation
toolchain and to generate by that toolchain resulting cross-
compiled applications into a root filesystem image to be
used in the targeting device. Cross-compilation toolchain is
compiled by host compilation system which is provided by
any GNU/Linux distribution. In the beginning of BEESIP
development we met issues that were holding us back. We
could not test all changes immediately, we had to recompile all
codes and generate images nearly always when we ported new
application, modified post installation scripts or when cross-
compilation toolchain has changed. Also, the system behaves
differently during testing if it is new root filesystem image, or
modified root filesystem that has been run more than once. At
least those issues led us to create an easy interface that will
ease the creation, automation and functional testing for system
images. The BEESIP build system is a set of scripts, Makefiles
and definition files that make an easy interface to OpenWrt
Buildroot. We can consider the main Makefile to be as a core
of the BEESIP build system. It performs all atomic operations
with OpenWrt Buildroot, works with source code management
systems (to update/revert/any operation with local copies
of OpenWrt source codes), patches OpenWrt Buildroot and
executes images as virtual machines. Those commands might
be used by any user or by autobuild scripts, which will be
described after. On the top of the core Makefile is autobuild.
sh script. This script calls all atomic operations within more
complex parameterized operations whose variables are defined
in specific target files. Those target files are user defined and
on the basis of those files are configuration files for OpenWrt
Buildroot created. Once we have configuration files the system
images could be created by calling autobuild.sh script with
command build and parameter containing the name of the
target file. Such techniques can be used for any purpose of

51C O M M U N I C A T I O N S 1 / 2 0 1 6 ●

R E V I E W

two separate parts. The first part of the uciprov tool is located
in the build system of OpenWrt. The package itself supports
the selection of used protocols for discovery of provisioning
URI, and also offers user to add specific variables during
the build time. Within the package we can also work with
macros, thus all variables do not have to be static at all. This
can be used when the domain has to be resolved, but the
URL structure is known. There are several macros that mostly
identify the hostname, domain, MAC address, IP address,
release number and many others and finally, we are able to
make system upgrades or automatic system reconfiguration
without administrator intervention on the targeting device. An
example of used macros in the build system for the uciprov
tool can be seen below where the URI to image for the system
upgrade is distributed.

string “Static URI for sysupgrade”

 depends on UCIPROV_USE_STATIC

 default “{base_uri}/image{fd}.bin”

The second side of UCI provisioning tool is an installable
package to OpenWrt system. Despite the fact that the tool
was designed for the distribution of UCI configuration among
all desired devices, it can call any function that we hook to
any stage of uciprov tool. The modules for this tool must
hook their functions with the following specific uciprov stage
call „uciprov_hook_add uciprov_stage custom-function-name“
in the script preamble. Thus we are able to upgrade the
BEESIP system, distribute SSH keys or configuration files
that do not comply with UCI syntax. Since we are working
only with variables, we are able to move the application logic
into scripts. This led to the implementation of URI resolver
scripts (DNSSEC, DNS, HTTPS...) and also to scripts for
handling the constructed URIs (system upgrade, public key
distribution).

The server side of UCI provisioning is currently solved
by providing static file structure with files which consist of an
export provided by UCI system. The flow diagram is depicted
in Fig. 2 and the description, how UCI provisioning works, is
following:
1.	 Waiting for the system to be ready to be provisioned.
2.	 Stage 1 (preinit):

a.	 During the first stage the URIs are obtained.
b.	 Uciprov macro functions are set up from UCI

configuration file. The same applies to every variable.
c.	 Subsequently the uciprov_geturi hook is called. This

stage calls every URI resolver script.
d.	 Call user hooked scripts.

3.	 Stage 2 (obtain configuration from URI):
a.	 URI addresses are validated.
b.	 Obtain configuration or files from user modules.
c.	 Call user hooked scripts (preapply).

5.2. Provisioning client

The impetus for development of provisioning tool arose
during the period when firmware images created by BEESIP
build system were deployed to computers, routers and wireless
access points. Those machines were not configured for target
networks, which were supposed to be deployed on. Because
the target configuration does not depend on a person who
builds the system, but on the network administrator, then
configuration should lie outside of a BEESIP firmware image.
The creation of such tool brings a question how the target
device should fetch and apply its configuration. In the build
system, we can pass static information about our provisioning
server which provides configuration (during build time). We
can also change this information in firmware image. This
information can be used for protocols which translate one
kind of information to another. As an example we can use
DNS protocol and its TXT records. The target configuration
could be stored on a server designated within an URI in
a variable from TXT record which is obtained from static URL
provided by build system. This solution is replicable for any
protocol which allows distribution of that kind of information
(LLDP, DHCP or any other else). An example how to resolve
UCI provisioning URI:

host -t txt provdomain \	

 provdomain descriptive text \ “provuri=http://12.34.56.78/uciprov/”

If a device knows where to obtain configuration from, then
the device can construct all provisioning URI addresses for
each device state it needs. This approach is necessary when
system administrator needs to differentiate configuration
for devices which start up the first time. UCI provisioning
client currently handles not only configuration files that are
handled by UCI system (Unified Configuration Interface) for
centralized configuration, but also the tar archives that consist
of compressed overlay. If a device knows where to obtain
configuration from, then it can obtain configuration data
from ordinary transport protocols designated in provisioning
URI. The benefits that BEESIP draws from OpenWrt builds
upon the UCI configuration system which is based on plain
text configuration files with firmly defined structure. This
configuration is obtained using software for file retrieval
from network resources, e.g. wget, and immediately imported
into UCI. From the introductory part of motivation for
the techniques it is clear why provisioning is a needed
component for configuration deployment on higher number
of such devices. During the development of any application
or any system the developers need to simplify the process of
deployment of applications and its configuration, thus the UCI
provisioning tool was developed, known under abbreviation
uciprov. The architecture of the uciprov tool stands on the

52 ●	 C O M M U N I C A T I O N S 1 / 2 0 1 6

R E V I E W

7.	 Security module

The security module is next element of BEESIP and all
the time, it was considered to make the developed system as
secure as possible [8]. Next to this, the entire system has to
be fault-tolerant, monitored and protected from attacks. If
a security incident is detected, BEESIP immediately solves
the situation and notifies this event in a detailed report to
administrator. The attacks are recognized and processed by
SNORT rules, the source IP address is automatically sent into
the firewall by SNORTSam and the intruder’s IP is blocked.
This is very flexible, reliable and efficient solution. Dropping
attack based on IP directly in the Linux kernel is much more
efficient than to check messages on the application level.
Only first messages are going to SNORT filter. When SNORT
identifies a suspicious traffic, next messages from the same
IP are blocked. If more soft faults appear from some IP, it is
blocked at the IPTABLES level; this approach can effectively
block incorrectly configured clients and servers. For example,
if a client sends REGISTER with proper credentials, it is not
obviously security attack but the client attempts to register
again and again, with every registration requires computing
sources at SIP REGISTRAR server, see Fig. 3. Such attempts
can be denoted and blocked for a time interval, the line IPS
(Intrusion Protection System) represents the CPU load in case
of active security module in BEESIP. The dependencies clearly
prove the ability of security module to mitigate the performed
attacks.

Fig. 3 Attack effectiveness based on REGISTER flood

Administrators can use Zabbix agent inside BEESIP to
gather all information directly into their monitoring system.
Partially, BEESIP is resistant to some kind of DoS attacks. It
depends on hardware used. If the hardware is strong enough
to detect some security incidents on application level, the
source IP is immediately dropped. Low-performance hardware
cannot handle such detection on application level. In such
a case, it is more suitable to stop DoS attack before it reaches

d.	 If obtaining configuration failed, retry stage 2.
4.	 Stage 3 - apply received configuration:
5.	 Call user hooked scripts (postapply, reboot).

6.	 PBX module

The PBX module is a key part of the BEESIP project.
It operates as SIP proxy or SIP B2BUA, depending on
configuration, and ensures a call routing. Asterisk is used for
call manipulation and for the PBX services. Kamailio is used
as a complementary part of PBX module for the proxying
SIP requests, the traffic normalization and for the security.
There are always two factors when developing VoIP solution.
The first one is high availability and reliability, the second
one is an issue of advanced functions. Many developers try
to find a compromise, we have implemented both, and our
BEESIP is able to adapt to the user requirements [12]. More
complex system can handle many PBX functions such as a call
recording or an interactive voice response but due to the bigger
complexity it is more susceptible to fault. On the opposite
side, pure SIP proxy is easier software, which can perform call
routing, more fault tolerant, but it is more difficult to use the
advanced PBX functions.

Fig. 2 Flow diagram of UCI provisioning client

53C O M M U N I C A T I O N S 1 / 2 0 1 6 ●

R E V I E W

Zabbix server, and then establishes a call to all these partner
probes in regular intervals. The call media consist of sound
samples that conform to the ITU-T P.862 recommendation,
the media payload is identical for the both directions of the
call and is recorded to the wav file. The resulting wav file is
then sent to the server for analysis and presentation of the
results. Due to the relatively simple implementation of the
monitoring probe a highly scalable solution for speech quality
monitoring can be deployed using the cost-effective hardware.
The BEESIP ensures the automatic addition of new probes to
the monitoring system, but it requires the access to the local
DHCP (Dynamic Host Control Protocol) service, where the
administrator needs to enter the records the probe requires
to work properly. First of all, it is the probe’s IP address and
hostname, which are used to communicate with the rest of
the network. Then it is the server’s IP address or its resolvable
domain name to allow the probe to communicate with the
server and the last item (apart from standard ones, e.g. default
gateway, etc.) is the path from which the probe can download
its private key. The last item has to be kept secret and the
communication must be secured using HTTPS protocol and
restricted only for intended hosts. With all this information in
place the probe then can register itself to the server without
the user interaction, which is useful in large deployment
scenarios. The BEESIP provides the secure communication
based on public keys infrastructure, which is also used to
provide access control, so that only authorized probes can
join the system and fetch the sensitive data about the other
probes. The transfer of network information from the server
to the probes uses a module, which is built upon the Zabbix
monitoring server [13]. By using the custom made tools
and standard Zabbix communication application interface
the direct link from the probes to network information
database of the Zabbix server is created. The probe then
reads the complete list of the probes, which is then used for
testing. A standard Zabbix web interface is used together
with visualization tool that allows to render a map of
probes and the tested interconnections, so that the results
of measurements are easily accessible and understandable.
Together with the information about the partner probes, server
sends the parameters of the test as well. The most important
parameter carries the information about the time period
between individual test rounds. All the test calls initiated by
one probe are performed at once, which in case of precise time
synchronization across the network will result in all calls to be
performed at once. Due to relatively low bandwidth of a single
call it is very difficult to reach measurable network load in
the intended environment of backbone networks. When the
call (or test round) is finished, the recorded wav files are then
transferred to the server for analysis. The test rounds are then
performed periodically and their frequency depends on the
time interval set by the administrator of the network. This way

BEESIP. Therefore, the SNORT running on a dedicated
machine provides more flexible and robust solution than the
SNORT as an integral part of VoIP system [8].

8.	 Monitoring module

Due to the nature of the BEESIP architecture, which is
focused mainly on the embedded and low-profile devices,
BEESIP can be deployed as the network monitoring probe
as well, as is depicted in Fig. 4. For these purposes, libraries
allowing continuous monitoring of speech quality have been
developed and incorporated into the BEESIP system. The
monitoring module takes the advantage of the Asterisk
PBX, which is the part of the BEESIP’s PBX module, and is
designed to work as the network probe [13].

Fig. 4 The monitoring system architecture

For the BEESIP’s monitoring module to work properly
there are two necessary components. The first one is the
BEESIP itself in the role of speech monitoring probe, the
second one is the data collection and presentation server.
While the former is fully implemented in the BEESIP, the
latter requires only a mainstream platform capable of running
HTTP server with Zabbix monitoring server and can therefore
be run on any commonly used server platform. The server role
is to collect the recorded phone calls and calculate the Mean
Opinion Score for the sound files, the client part looks into
the database of the partner probes, which is obtained from the

54 ●	 C O M M U N I C A T I O N S 1 / 2 0 1 6

R E V I E W

design, implementation and maintenance of open-source
communication system BEESIP. We are aware of the fact
that our work represents applied research and experimental
development and is highly practically oriented, nevertheless
with many positive comments from research and industrial
community (e.g. technology director at Cisco on linkedin).
All source codes are released under GPL license and available
as open-source software. Fully functional platform images
are distributed and prepared mainly for x86 platform, which
is also possible easily virtualized for testing or deployment
purposes. Nowadays there are platform targets created for
x86 platform and access points based on MIPS architecture
(ar71xx platform). Binary images from the auto-build system
can be downloaded from [14] and source codes can be cloned
from GIT repository from the same page as well [14]. There
are several example firmware images for several target devices,
such as TP-Link access points or Raspberry PI computer.
Configuration is available through web-browser, SSH client
or to be provisioned using supported provisioning protocols.

The approach used in the build system can help networkers
to maintain increasing amount of devices that are under
their administration. Moreover, we became responsible for
maintenance of Telephony repository in OpenWrt and the
trust given us by OpenWrt community is the real appreciation
for our work in the BEESIP project. Now, we check and help
to improve every patch and package which is submitted by
developers in Telephony OpenWrt repository. We are closer
to the needs of networkers and connected with OpenWrt
community.

Acknowledgement

The research leading to these results received funding
from the grant of SGS reg. no. SP2015/82 conducted at VSB-
Technical University of Ostrava, Czech Republic and also was
supported by the National Sustainability Program under grant
LO1401. For the research, infrastructure of the SIX Center
was used.

the compromise between network load and responsiveness of
the system can be defined thus making the system usable in
a vast number of different network environments.

9.	 Use cases

In this paper, main ideas of the BEESIP architecture are
described, the BEESIP includes own provisioning and build
tool that is able to build this OpenWrt-based system for almost
any platform with desired characteristics. Up to this time there
has been developed following use cases:
•	 Eduroam Access Points – Fully provisioned, adaptable and

monitored Access Points (open-source and low-cost version
supporting and spreading IP mobility and roaming within
academic environment).

•	 Honeypots and network probes – fully provisioned honeypots
and network probes that are able to evaluate network
characteristics and collect network data.

•	 PBX and SBC (Session Border Controller) – Components
for building an infrastructure that provides VoIP telephony.

•	 Speech quality monitoring probes – fully provisioned probes
providing speech quality assessment with integration into the
monitoring system Zabbix.

10.	 Conclusion

This paper describes the idea and the proposition of the
BEESIP system, which is based on one of the popular Linux
distributions for the embedded devices. The developed system
is fully adoptable and each component is reusable on any
other Linux distribution. This system introduces modules
for several areas, such as security, PBX, provisioning or
management. Some of them have been developed from scratch
and the rest of the components have been fully adopted. New
tools for speech quality assessment and provisioning have
been especially designed for the deployment on embedded
devices. The contribution of our work is in the overall

References

[1]	 VOZNAK, M., SLACHTA, J., MACURA, L., TOMALA, K.: Advanced Solution of SIP Communication Server with
a New Approach to Management, Telecommunication Systems, vol. 59, No. 4, 2015, 541-549.

[2]	 SEGEC, P., KOVACIKOVA, T.: A Survey of Open Source Products for Building a SIP Communication Platform,
Advances in Multimedia, no. 372591, 2011.

[3]	 ABID, F., IZEBOUDJEN, N., BAKIRI, M., TITRI, S., LOUIZ, F., LAZIB, D.: Embedded Implementation of an
IP-PBX/VOIP Gateway, Proc. of 24th Intern. conference on microelectronics, No. 6471377, 2012.

[4]	 TITRI, N., LOUIZ, F., BAKIRI, M., ABID, F., LAZIB, D., REKAB, L.: An Opencores/Open-Source Based Embedded
System-On-Chip Platform for Voice Over Internet, INTECH: VOIP Technologies, 2011, 145-172.

55C O M M U N I C A T I O N S 1 / 2 0 1 6 ●

R E V I E W

[5]	 PRASAD, J., KUMAR, B.: Analysis of SIP and Realization of Advanced IP-PBX Features, Proc. 3rd Intern. conference
on electronics computer technology, vol. 6, no. 5942085, 2011, 218-222.

[6]	 SENTHIL, S. K., DHIVYALEKSHMI, B. S., PREETHI, S., PERUMALRAJA, R.: PBX Implementation in Lan
Using Asterisk Open Source Software, Intern. J. of Applied Engineering Research, vol. 10, no. 55, 2015, 66-69.

[7]	 ALAM, M., BOSE, S., RAHMAN, M., AL-MUMIN, M.: Small Office Pbx Using Voice Over Internet Protocol (VOIP),
Intern. conference Advanced communication technology, No. 4195481, 2007, 1618-1622.

[8]	 SAFARIK, J., VOZNAK, M., REZAC, F., MACURA, L.: IP Telephony Server Emulation for Monitoring and
Analysis of Malicious Activity in VOIP Network, Communications - Scientific Letters of the University of Zilina, vol. 15,
No. 2a, 2013, 191-196.

[9]	 CHI, R.: Intrusion Detection System Based on Snort, Lecture Notes in Electrical Engineering, 272 LNEE, vol. 3, 2014,
657-664.

[10]	POCTA, P., KORTIS, P., VACULIK, M.: Impact of Background Traffic on Speech Quality in VOWLAN, Advances in
Multimedia, vol. 2007, 2007, No. 57423.

[11]	MRVOVA, M., POCTA, P.: A Quality Estimation of Synthesized Speech Transmitted over IP Networks,
Communications - Scientific Letters of the University of Zilina, vol. 16, No. 1, 2014, 121-126.

[12]	VOZNAK, M., TOMALA, K., VYCHODIL, J., SLACHTA, J.: Advanced Concept of Voice Communication Server
on Embedded Platform, Przeglad Elektrotechniczny, vol. 89, No. 2b, 2013, 228-233.

[13]	REZAC, F., ROZHON, J., SLACHTA, J., VOZNAK, M.: Speech Quality Measurement in IP Telephony Networks
by Using The Modular Probes, Communications in Computer and Information Science, vol. 522, 2015, 172-181.

[14]	Project beesip, repository with source codes, available on url: https://homeproj.cesnet.cz/ projects/besip/wiki/
download.

