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1. 	 Introduction

In this paper we study problems which occur in uniform 
scheduling of workload distribution. The uniformity is expressed 
by an irregularity measure and the goal is to minimize the 
irregularity measure of parts of the schedule. This problem is 
motivated by the following job scheduling problem:

Let n vehicles and m×n jobs be given. Every job has assigned to 
it the value ai,j which represents its quantity. These values form the 
m×n matrix A. We need to find the most regular m-days job schedule, 
which gives minimal difference between the sums of rows of the 
permuted version of the matrix A.

The problem is also called the Matrix Permutation Problem 
(MPP) which was first mentioned in [1]. Further investigation 
of MPP can be found in [2], where this problem was solved for 
garbage trucks. 

The mathematical formulation of the problem is the following:
Let a  nonnegative real m×n matrix A=(a

ij
) be given. Let 

I={1,2,…,m}, J={1,2,…,n} be sets of row and column indices. For 
each column j !  J of matrix A we will use the notation π

j
 for the 

permutations of elements in that column. Let π=(π
1
,π

2
,… ,π

n
) 

denote the vector of permutations of all columns of A  and let 
Aπ denote the permuted matrix. Let P

mn
 be the set of all such 

permutation vectors. Let Sπ=(s
1
π    , s

2
π        ,…,s

m
π         ) denote the vector of 

row sums of permuted matrix Aπ. Let f be a  function called the 
irregularity measure. The following optimization problem will 
be called the uniform workload distribution problem (UWDP) 
min{ f (Sπ ); π!P

mn
}.

The irregularity measure f : Jm " 0,∞) is any Schur-convex 
function, where J=(a,b) is an interval. More on irregularity 
measures and Schur-convex functions can be found in [3]. The 
most used irregularity measures are:

•	 , , ..., ...f x x x x x xsqr m m1 2 1
2

2
2 2d d d= - + - + + -d ^ ^ ^ ^h h h h  

•	 , , ..., ...f x x x x x xabs m m1 2 1 2d d d= - + - + + -d ^ h  

•	 , , ..., , , ..., , , ...,max minf x x x x x x x x xdif m m m1 2 1 2 1 2= -^ ^ ^h h h 

•	 , , ..., , , ...,maxf x x x x x xmax m m1 2 1 2 d= -d ^ ^h h  

•	 , , ..., , , ...,minf x x x x x xmin m m1 2 1 2d= -d ^ ^h h 
 

...where /min x x x mm1 2d = + + +^ ^ h h

2. 	Computational complexity of UWDP

In [4] it was proved that UWDP (MPP) is an NP-hard 
problem. In [2] it was shown that even a  2-row version of 
UWDP is NP-hard. The proof of this fact was established using 
transformation from the Set partition problem (definition of SPP 
can be found in [5]). 
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We get optimal column permutations ,1 2{ { , satisfying 
conditions 
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S4: Update π by applying permutation 1{  (resp. 2{ ) to π
j
 for  

j !  J
1
 (or j !  J

2
).

S5: If no stopping criterion is satisfied GOTO S2, else END, 
A a ,i jj=r r^ ^ hh . 

Tests on real data give promising results. The authors Š. Peško 
and M. Kaukič state conjecture that this algorithm can also be 
(with a suitable iteration count and sufficient number of restarts) 
the exact algorithm (at least for irregularity measure f

dif
).

	
3.3 Model of linear programming

	
In the mentioned work [7] the following model of mixed, 

integer, linear programming (MILP) was introduced. Objective 
function is f

dif
.

The value of x
ijk

 is equal to one if π
j
 (i)=k and otherwise 

zero. The real variables z
i
 i!I are the i-th row sums of permuted 

matrix Aπ and the variables z
L
, z

U
 are variables for lower and upper 

bounds S
L
, S

U
 of row sums. 

	
3.4 Model of quadratic programming

In [7] the model of mixed, integer, quadratic programming 
(MIQP) was introduced. Objective function is fsqr

d .

On the other hand, the two-column case is solvable in 
polynomial time. A  simple polynomial algorithm can be found 
in [4]. It is enough to order the elements of the first column 
in a  descending order and the elements of the second column 
in an ascending order. It is possible to show that we obtain the 
optimal solution for any irregularity measure mentioned above. 
The complexity of the algorithm based on this approach is  
O(m log m).

3. 	Solutions of UWDP

In this section we describe two heuristics for the solution of 
general UWDP. Both algorithms are based on the fact that the 
two-column case is solvable in polynomial time. We also consider 
the representation of UWDP by two models of mathematical 
programming. 

3.1. Decomposition method

In the paper [2] the following heuristic was introduced:

Input: Matrix A=A1
 of the type m×n.

For i =1 to n–1 do:
Create submatrix B

m×2
 from the first pair of columns of  A

i
.

Solve the UWDP for matrix B
m×2

. (The row-sum vector of the 
solution is denoted by Sπ.)

Create matrix A
i+1

 by replacing the first two columns of A
i
 

with column Sπ.
Output: Solution for the matrix A

n-1
.

	 Tests showed that this method is not very successful 
since the set of possible column permutations is very restricted.

3.2. Stochastic decomposition method

This method was introduced and studied in [6 and 7]. Let J
1 

be the nonempty proper subset of column indices J and J
2
=J-J

1
. 

The set {J
1
,J

2
} will be called the admissible decomposition of the 

columns of matrix A. 

S1: 	Let π=(π
1
,π

2
,…,π

n
) be arbitrary permutations of index set I.

S2: 	Choose randomly {J
1
,J

2
} – admissible decomposition of the 

columns of A.
S3: 	Solve the two-column UWDP with aggregated matrix  

B=(b
ij
)

(m×2)
 

	
	 where  ,,b a b a i I,,i

j J

i i j

j J

ji1 2 jj

1 2

!= =
! !

r r^ ^h h/ /
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where x
1
,x

2
,x

3
,x

4
 are possible values of vertices. Hence w cannot 

be induced by any x. 
Let G=(V,E,w,x) be a  graph. Let V={v

1
,v

2
,…,v

2m
} and w be 

a  mapping on edge set induced by mapping x on vertex set. 
Then the problem of finding the most regular perfect matching 
is the problem to find such perfect matching in G, for which the 
function fsqr

d  is minimal. The weight of edge e
i
 will be denoted 

by w
i
. If the perfect matching contains the edges e

1
,e

2
,…,e

m
, then 

we have 

, , ...,f w w w wsqr m i

i

m

1 2

1

2d= -d

=

^ ^h h/  

 
where δ=(w

1
+w

2
+...+w

m
)/m. Since the matching is perfect (it 

contains all vertices of G) and the edge weights are induced by 
vertex values, we obtain:

w x v mi

i

m

j

j

m

1 1

2

d= =
= =

^ h/ /

The last sum is taken over all vertices of G and hence it is 
a constant. The consequence is that δ is a constant for given graph 
G and mapping x. Then 
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It means that the problem to find minimum of the function 
fsqr
d  is in our case equivalent to the problem to find the minimum 

of the function fsqr . Hence the problem of finding the most 
regular perfect matching in a  graph G=(V,E,w,x) is equivalent 
to the problem of finding minimal perfect matching in graph 
G=(V,E,w2) and this problem is solvable in polynomial time [11].

5.	 Conclusions and further research

There are several approaches how to represent uncertainty. 
In [12] the UWDP in interval arithmetic was introduced. It 
means that elements of matrix A are not exact values, but we have 
intervals, to which these values belong.  It was proved that this 
problem is NP-complete and the two-column case is solvable in 
polynomial time. 

The most common approach in systems with uncertainty is 
the fuzzy arithmetic. Our future plan is to define the UWDP in 
fuzzy arithmetic. We suppose that the complexity results will not 
change but it remains an open problem.  

The weighted version of the problem was studied in [13]. 
It is called the weighted uniform workload distribution problem 

Variables x
ijk

 and z
i
 mean the same as in the MILP model. 

Tests show that the MILP model is more effective than the MIQP 
model, but the mathematical programming solvers (even of such 
quality as Gurobi) have sometimes difficulties with the solving 
of not very large UWDP instances in reasonable time (since the 
model has large number of bivalent variables). 

4. 	Restricted sets of permutations

In [8] the generalization of UWDP was suggested in which 
the set of permutations is restricted. The permitted permutations 
are represented by graphs. Paper [9] deals with conditions which 
allow to represent the set of permitted permutations by graphs. 
The two-column case of this generalization is studied in [10]. It 
was shown that this problem can be solved as the most regular 
perfect matching in a graph. In the mentioned paper [10], there 
are introduced exact polynomial algorithms for finding the most 
regular perfect matching in graphs for irregularity measures 
,f fmaxdif
d  and fmin

d . The existence of exact polynomial algorithms 
for measures ,f fsqr abs

d d  was an open problem.
We will show that there is also polynomial algorithm for 

irregularity measure fsqr
d , but the weights of edges must satisfy 

a  special property (which is fulfilled by graphs that arise from 
the mentioned generalization of UWDP). Let an edge-weighted 
graph G=(V,E,w) be given. Let V={v

1
,v

2
,…,v

2m
}. Let w : E → R

0
+ be 

a  function that represents the weights of edges. If there exists 
a mapping x : V → R

0
+ such that 

 
,e E e v v w e x v x vi j j16 ! = = +^ ^ ^h h h" , ,

 
we say that w is induced by x. There exist mappings w that cannot 
be induced by any x. For example, we can consider complete 
graph on 4 vertices  v

1
,v

2
,v

3
,v

4
 with edge weights 

edge {v
1
,v

2
} {v

1
,v

3
} {v

1
,v

4
} {v

2
,v

3
} {v

3
,v

4
} {v

3
,v

4
}

weight 2 2 2 4 2 4

This leads to the unsolvable system of linear equations:
x

1
 + x

2 
= 2

x
1
 + x

3 
= 2

x
1
 + x

4 
= 2

x
2
 + x

3 
= 4

x
2
 + x

4 
= 2

x
3
 + x

4 
= 4
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(WUWDP). Let , , ...,S s s sm1 2=r r r r^ h denote the vector of row 
sums. Let w

1
,w

2
,…,w

m
 be weights of rows. In this version of the 

problem we require that the values , , , ...,w s w s w sm m1 1 2 2
r r r  are 

as uniform as possible.  It is easy to consider that the UWDP 
is a special case of weighted version, where w

1 
= w

2 
= ... = w

m
= 1.

At the end, we can also mention some works which deal 
with similar problems to the UWDP. For example: the column 
permutation algorithm of a special case of the UDWP is studied 
in papers [14] and [15], the uniform k-partition problems are 
classified and examined in [16 and 17]. 
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