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1. 	 Introduction

Quantum dots (QDs) are very small semiconductor particles, 
only several nanometres in size [1], so small that their optical 
and electronic properties differ from those of larger particles. In 
QDs the free carriers are confined to a small region by potential 
barriers in all three directions of 3D space. If the size of the region 
is less than the electron wavelength, the electronic states become 
quantized at discrete energy levels as it happens in an atom. They 
are a central theme in nanotechnology. Many types of QDs will 
emit light of specific frequencies if electricity or light is applied to 
them, and these frequencies can be precisely tuned by changing 
the dots’ size, shape and material, giving rise to many applications 
[2 - 3]. The exploitation of this kind of nanostructures towards 
the improvement of the devices performance mainly relies on the 
ability to control their size and uniformity [4].

To bury QDs into piezoelectric matrix induces not only an 
elastic field, but also a piezoelectric field. The induction of both 
fields is given by the lattice mismatch between the QDs and the 
surrounding piezoelectric matrix. Since both the elastic and 
piezoelectric fields are equally important in the understanding 
of the photonic and electronic features in semiconductors [5] a 
reliable analysis on these fields is crucial to the design of such 
structures. QDs can exist in a wide variety of shapes, including 
cuboidal, pyramidal [6], truncated pyramidal, and lens shaped. 

The stress and the strain distributions in and around the QDs have 
recently been investigated by many researchers [7].

The finite element method (FEM) has become an essential 
solution technique in many areas of engineering and physics [8]. 
The FEM is an efficient computational tool in the development of 
efficient micro and nanoscale systems [9 - 11].

In this paper a coupled 3D ANSYS Multiphysics FE model 
is used to simulate a cubic matrix with an embedded cubic QD 
under static thermal loadings. Our particular focus is on the 
influence of thermo-electromechanical effects on properties of 
QDs, where InAs (Indium arsenide) is embedded into GaAs 
(Gallium arsenide) matrix. The paper is organized as follows: 
section 2 and section 3 briefly present the governing equations for 
thermo-piezoelectricity and the finite element equations. Section 
4 describes used simulation model in the ANSYS Multiphysics 
section 5 presents the numerical results. Conclusions are 
summarized in section 6.

2. 	Governing equations for thermo-electro-elastic fields

The base requirement of QDs is to have initial strain, which 
induces electric field in a  piezoelectric material. This initial 
strain is given by the lattice mismatch. Usually the QD has 
almost vanishing thermal conduction and thermal expansion 
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expressed through the stiffness coefficients and the coefficients of 
linear thermal expansion kla  as

cij ijkl klc a= 	 (6)

The thermal constitutive equation (Fourier’s law) is given by

, , ;x xi ij j} x l b x=^ ^h h   where  ,j jb i= 	 (7)
 

where ijl  is the thermal conductivity tensor. Both materials have 
transversely isotropic properties [13]. 

The following essential and natural boundary conditions are 
assumed for the mechanical field
, ,x xu ui ix x= r^ ^h h, on uC 	 (8)

, ,x xt n ti ij j ix xv= = r^ ^h h, on tiC 	 (9)   
     
for the electric field

x xz z=^ ^h h, on pC , 	 (10)

x xn D Qi i =^ ^h h, on QC ,	 (11)
 

and for the thermal field

, ,x xi x xi=^ ^h h, on Ci , 	 (12)

, , ,x x x xq k n q,ij j ix x xi= =^ ^ ^ ^h h h h, on qC ,    	  (13)
 

where uC  is the part of the global boundary with prescribed 
displacements, and on tiC , pC , QC , Ci , and qC  the traction 
vector, the electric potential, the surface charge density, the 
temperature and the heat flux are prescribed, respectively.

3. 	Finite element equations

Substituting (9), (10) and (11) into (6) gives the coupled 
finite matrix element equation for an element

Mq Rq Kq f ft b+ + = +p o 	 (14)

where
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where N(S) is the matrix of the shape functions evaluated on the 
boundary S. In a strongly coupled thermo-piezoelectric analysis, 

coefficients. In our analysis we consider a periodic distribution of 
QDs in the matrix and for a numerical simulation we can select 
a representative volume element (RVE) illustrated in Fig. 1. This 
piezoelectric composite structure under a  thermal load can be 
described by the theory of thermo- piezoelectricity.

Fig. 1 Quantum dot electronic structure with InAs cubic dot  
in a finite sized GaAs  substrate

The governing equations for thermo-piezoelectricity in 
a homogeneous medium are given by the balance of momentum, 
the first Maxwell’s equation for the electric displacement vector, 
and heat conduction equation [12]

, , ,x x xüb,ij j i iv x x xt+ =^ ^ ^h h h	 (1)

, ,x xD R 0,j j x x- =^ ^h h 	 (2)

, , ,x x xc S 0,i i} x i x xt- + =o^ ^ ^h h h ,	 (3)
 

where ijv , x , i} , i , ui , Di , bi  , R and S are the stress tensor, 
time, heat flux vector, temperature difference, displacement vector, 
electric displacement vector, density of body force vector, volume 
density of free charges and density of heat sources, respectively. 
Also t  and c are the mass density and specific heat, respectively. 
Dots over a quantity indicate time derivatives. A static problem 
can be considered formally as a special case of the dynamic one, 
by omitting the acceleration ,xüi x^ h in the equations of motion 
and the time derivative term ,xi xo ^ h in equation (3). 

Then, the constitutive relationships express coupling of the 
mechanical, electrical and thermal fields and are given by

, , , ,x x x xc e Eij ijkl kl
e

kij k ijv x x x xf c i= - -^ ^ ^ ^h h h h	 (4)

, , , ,x x x xD e h E pj jkl kl
e

jk k jx x x xf i= + +^ ^ ^ ^h h h h	 (5)
 

where cijkl , e jkl , h jk  and p j  are the elastic, piezoelectric, 
dielectric and pyroelectric material tensors in a  piezoelectric 
medium, respectively. The stress-temperature modulus ijc  can be 
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Fig. 2 Detail of FE mesh around QDs

4.2	Boundary conditions

The four side faces of the matrix are fixed along the direction 
normal to the side faces, the bottom side is fixed in all directions, 
top surface is free of tractions. Lateral sides and bottom side of 
the matrix cube are thermally isolated. Temperature is prescribed 
on the top side. All surfaces have vanishing normal component of 
electric displacement, except the bottom side, where a vanishing 
electric potential is prescribed. Then, one can write the following 
boundary conditions for the InAs/GaAs electronic structure on 
surfaces:
ABFE and DCGH: , , ,u t t D q0 0 0 01 2 3 1= = = = = ,
BCGF and ADHE: , , ,u t t D q0 0 0 032 1 2= = = = = ,
ABCD: , , ,u u u q0 0 0 03 1 2 z= = = = = ,
EFGH:  , , ,t t t D0 0 03 1 2 3 0i i= = = = = .

On the interface between InAs and GaAs the continuity 
of displacements, electric potential and temperature has to be 
satisfied

, ,u ui
m

i
QD m QD m QDz z i i= = = 	 (16)

 
as well as the reciprocity of traction vector, electric displacement 
and heat flux

, ,t t D D q q0 0 0i
m

i
QD

i
m

i
QD m QD+ = + = + = 	 (17)

In the first example stationary conditions can be considered 
and we consider prescribed temperature at a wide interval from 0 
to 500oC to test behavior of the electronic microstructure.

the electric potential and temperature degrees of freedom are 
coupled [14].

4. 	Simulation model
	
Using the above definitions and governing equations described 

in the previous section, a Finite Element Model was developed in 
ANSYS Multiphysics to resemble the work done in ANSYS and 
validate the assumptions made in the model.

The Piezoelectric Devices (PzD) user interface found under 
the Structural Mechanics branch in ANSYS Multiphysics, 
combines Solid Mechanics and Electrostatics for modeling of 
piezoelectric devices, for which all or some of the domains 
contain a piezoelectric material. The interface has the equations 
and features for modeling piezoelectric devices, solving for 
displacements and electric potential.

Conversion of material properties of piezoelectric materials 
(such QDs) has caused many users confusion because of the 
difference between manufacturer-supplied data and the format 
required by ANSYS. The direct method for performing a coupled-
field analysis involves a  single analysis using a  coupled field 
elements SOLID226 and SOLID227. Coupled-field elements 
contain all the necessary degrees of freedom. They handle the 
field coupling by calculating the appropriate element matrices 
(strong, or matrix coupling) or element load vectors (weak, or 
load vector coupling). In linear problems with strong coupling, 
coupled-field interaction is calculated in one iteration. Weak 
coupling requires at least two iterations to achieve a  coupled 
response. For detailed descriptions of the elements and their 
characteristics (DOFs, KEYOPT options, inputs and outputs, 
etc.), see the Element Reference [15].

4.1	Mesh definition

In [16], the authors performed all numerical experiments 
under the condition for the relative errors between successive 
refinements to be less than 10−6. It was achieved with around 105 
triangular elements. In our model, we define a slightly finer mesh 
than the default settings.  The mesh is refined around the QDs to 
get high resolution for the calculated fields.

A  3D ANSYS model was created by constructing the 
geometry shown in Fig. 2 and meshing it using 195,696 SOLID 
elements with 339,117 nodes.
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An important point to note is that the best way to check the 
numerical results is to use to check the results are symmetric to 
X and Y.  For cubic materials nine planes of elastic symmetry 

4.3	Material properties

For a periodic distribution of quantum dots in a piezoelectric 
matrix we consider a representative volume element (RVE) with 
prescribed temperature on the upper side. The RVE is assumed 
to have a cubic geometry with side length of 40 nm and a cubic 
quantum dot with side length of 4nm is embedded in the center. 
Material properties of the dot correspond to InAs [17 - 19]:
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Matrix (substrate) is made of GaAs, whose properties are
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It follows from the lattice constants that the eigenstrains are 
equal

 
.0 07

* * *
11 22 33f f f= = = . We note that the pyroelectric 

coefficient p
1
 is not considered in the numerical analyses as 

a quantity with a small influence on the results.

5. 	Results and discussion

In this example stationary conditions are considered and 
we consider prescribed temperature at the value 250oC to test 
behavior of the electronic microstructure. All calculations were 
performed for the GaAs/InAS QDs obtained from finite element 
analysis carried out in ANSYS Multiphysics program.  The 
numerical results obtained by the proposed method are shown in 
the following figures.   Figures 3a-c and 4a-c show the course of 
the electric potential and electric field in three planes. Reminded 
that the initial values of the mismatch induced strain of the QDs 
are .0 07

* * *
11 22 33f f f= = = . For band-gap calculations, the 

mismatch strain is subtracted from the actual compatible elastic 
strain. As a result while in the solid mechanics community the 
compatible elastic strain is normally expressed and plotted, the 
QDs research community often illustrates the subtracted strain. 
This can potentially cause confusion and care must be exercised 
in interpreting results from the solid mechanics literature. 
Figures 4a-c show that the electric filed component E

X
 there is 

little temperature-dependent.  Further, we can see that in inside 
the QDs, the magnitude of xxf , along the X-axis at Y = 0, Z =0, 
decreases with an increase in temperature. The magnitude of yyf
along X-axis at Y = 0, Z =0, decreases towards zero (unstrained 
region) faster at higher temperature than at lower temperature. 
The magnitude of zzf  at the center of the QDs, increases with an 
increase in temperature. 

(a) plane YZ  (X=0)

(b) plane XZ (Y = 0)

(c) plane YZ (X = 0)
Fig. 3 Electric potential [mV] in plane YZ (X = 0)
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are prescribed and are derived from tetragonal symmetry [20]. 
Three of nine planes perpendicular to coordinate axes, are 
interchangeable.  Six planes have normals that contain an angle 

π/4 with the coordinate axes. Only three independent constants 
remain. The remaining 12 coefficients are all equal to zero.  
The potential difference across the top and bottom of the QD 

(a) plane XY (Z=0)

(b) plane XZ (Y=0)

(c) plane YZ (X=0)
Fig. 4 The electric field component E

x
 [V/µm]

(a) %xxf 6 @ in plane Y Z ( X=0)

(b) zzf in plane XY  (Z=0)

(c) xyf in plane XY (Z=0)
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decreases with an increase in temperature. The electric field E
x
 in 

plane XY decreases with an increase in temperature.
However, the values of electromechanical quantities show a 

slight shift. This shift is significant as the values for quantities like 
electric potential, X, Y and Z-component of electric field vector 
and X-component of strain tensor, xxf  at the boundaries of QDs 
system structure. 

The electric potential in planes Y = 0 and Z = 0 are similar to 
that in the plane X = 0 presented in Fig. 3 due to cubic symmetry 
of the boundary conditions and material properties. We just need 
to mention that using the symmetry conditions, other E

i
 on the 

three planes can be easily shown, with similar patterns. The strain 
components are presented in Figs. 5a-d.

We investigated also influence of temperature prescribed on 
the upper surface of the quantum dot electronic structure EFGH 
in Fig. 1. The above results are valid for prescribed temperature 
250  oC. In Figs. 6a-d there are variations of strains along X 

(d) xzf  in plane XY (Z=0)
Fig. 5 The strain components %ijf 6 @

(a) The variation of strain component xxf  along X coordinate 

(b) The variation of strain component yyf  along X coordinate

(c) The variation of strain component zzf  along X coordinate

(d) The variation of strain component zzf  along Z coordinate

Fig. 6 The variation of strain components
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the material properties of the piezoelectric QD and matrix. The 
best way to check the numerical results is to use the results in 
figures and check if the results are symmetric with respect to x 
and y. We are dealing with cubic materials and the results should 
be cubic symmetric. Once we have checked this issue, the second 
check is to check if the results are reasonably accurate enough by 
comparing these from two different mesh sizes.   In this paper, we 
did not do this check, because the FE mesh is sufficiently fine.
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coordinate at various temperatures 125  oC, 250  oC,  375  oC and 
500  oC. One can observe that influence of temperature is small 
on values of induced strains. The induced strains are reduced in 
the inclusion if the temperature is enhanced. A similar conclusion 
can be made for variation of strains along X and Z coordinates.

6. 	Conclusion

In this paper, a three-dimensional piezoelectric FE analysis 
using ANSYS Multiphysics is presented to calculate the elastic 
and electric fields in QD nanostructures. Numerical results for 
the InAs/GaAs QD nanostructure show that the elastic and 
electric fields are strongly influenced by the differences between 
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