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1.	 Introduction

In application practice, the properties of new control theories 
are often investigated at inverted pendulum. Balancing a  ball 
of on two - axis platform is a  variant of this testbed in which 
you can successfully find the limits and observe behavior of the 
control structure. Practical impact of these control structures 
is immense. Generally, in defense military technology such as 
camera stabilizations on moving vehicle or pointing camera 
angle control during drone flying are used. The same principle 
of operation like in this article is used for stabilizing platforms 
in sea ships and aircrafts. General idea is also used in high - end 
applications like vertical landing of space rockets.

Bench - marking system consists of two DC machines 
connected with a long stick at moving platform. DC motors are 
controlled via standard full bridge topology. The processing unit is 
Kinetis K60 which is a novel digital signal controller designed for 
the automotive industry. The position of subject placed at plate is 
obtained from the resistive touch panel in terms of voltage drop. 
In some articles, the camera [1, 2] is used to estimate the position 
of the globule. Optical detection requires heavy processing for 
position estimation. This method leads to huge computation 
power. Another approach is based on laser technology or 

basic sonar rangefinders. For stabilizing one degree of freedom 
applications gyro and accelerometers are used to measure system 
states [3]. Resistive touch surface excel over others due to its 
positive features. From the perspective of the automatic regulation 
conductive surface represents zero order transfer function. This 
means that the response will be recovered immediately without 
undesirable delay [4]. 

2. Ball on plate mathematical model

To be able to analyze the behavior of an ideal ball - and - plate 
balancing system it is necessary to create mathematical model and 
equivalent transfer function. 

Our testbed is biaxial. It means that it has two degrees of 
freedom X and Y, and in a center is anchored on a rotating joint. 
The ball is stabilized and controlled to the demanded position 
through the movements of the plate, which are performed by 
two DC motors with permanent magnets. Each of the motors is 
responsible for the movements of the platform just in one axis. 
This is the reason why the same scheme is applied to both degrees 
of freedom Figure 1b).
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sinF F m gtx rx $ $ a+ = 	 (6)

Substituting Equation (1) and Equation (5) into the Equation 
(6) leads to:

sinm x m x m g
5
2$ $ $ $ a+ =p p 	 (7)

After mathematical corrections of Equation (7) we can get 
the relationship between ball acceleration and sin(α). Due to 
sin function, nonlinear system model was created. In the area 
of angles up to ± 5° it is possible to neglected the influence of 
sin function and substitute expression sin(α) = α. By applying 
Laplace transformation, we can get transfer function of the ball 
on plate system. Relation between ball position x and inclination 
angle of the plate α is as follows:
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Where g is gravitational acceleration. Relation between motor 
arm angle and inclination angle of the plate:

d
l $z a= 	 (9)

Our main goal during stabilizing platform is to ensure 
a stable objective position and to achieve position reference 
tracking. Active force in this task is gravity. The ball is capable 
of rolling on the beam under the action of gravity. Combination 
of gravitational force and inclination of plate leads to unstable 
position change in an open loop system. Root locus plot Figure 
2b) explains instability of derivation transfer function Equation 
(8). Closer look for steady state shows us the behavior of the 
system under the following condition s = 0. When s approaches 
0, the denominator of the transfer function approaches 0, but 
final value of Equation (8) approaches infinity Figure 2a). A well 
- known principle as the final value theorem applied at Equation 
(8), lead us directly to the reason for instability. The same 
theorem offers a huge space for feedback control by algorithms 
ensuring stability.

Many authors use Lagrange equations of second kind or 
Euler - Lagrange equations for dynamical description of the ball 
on plate system [5]. It is universal method which is mostly used 
in mechanical engineering to derive dynamic motion equations. 
Number of generalized positions q

i
 and velocities qo

i
 depends on 

degrees of freedom of the system. It is more complex method, but 
for this application it is sufficient to use another approach based 
on the Newton’s second law [6, 7]. This method considers just the 
relation between the inclination angle of the plate and ball 
position, see Figure 1b). Friction is neglected.

Forces which affect the ball:
F

rx - rotational part and Ftx - translational part of the force 
which affect the ball. 

Translational part of the force depending on the ball’s 
acceleration:
F m xtx $= p 	 (1)

Torque of rotational motion:
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Where ​​ω​ 
x
​​​ is angular velocity of the ball in X axis and J is its 

moment of inertia. Equation (2) leads to rotational part of the 
force which affect the ball:

F
r
J xrx 2= p 	 (3)

Moment of inertia of the sphere:

J m r
5
2 2$= 	 (4)

Substituting Equation (4) into the Equation (3) we get 
rotational part of the force which affects the ball acceleration:

F m x
5
2

rx $= p 	 (5)

For equilibrium state, the sum of the rotational and 
translational force component of the ball is equal to the force that 
moves it on the inclined plane downwards.

     
a)                                                                                                 b)

Figure 1 a) Platform visualization; b) Model for X axis
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into axes X, Y. The resulting curve is decomposed by offline FFT 
and then compared with the original position loop bode plot 
Figure 4b). If the resulting frequencies are part of the position 
loop bandwidth, then trajectory will be followed without error. 

4. 	Master control algorithm

The proposed testbed is controlled by the Kinetis K60 digital 
signal controller. K60 device detects five feedbacks. Voltage drop 
on resistive touch screen, two currents from hall effect sensors 
and pulses from two encoders. Each DC machine has its own 
full bridge topology of power supply converter integrated in 
BTN8982/86TA.

5. Stabilization design

The first experimentally verified structure is standard PD 
controller. By adding the PD controller (the green part of Figure 
6a)), a stable structure is created to provide the both objectives. 
The transfer function Equation (11) of the whole structure was 
derived from the Masson’s rule formula [8]. Parameters of PD 
controller K

D
, K

P
 were determined by pole placement method. 

Equation (11) shows experimental results of PD structure.
Closed loop transfer function of Figure 6a) PD controller:
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3.	 Control of DC machines

3.1	Mathematical model of DC machine with permanent 
magnet

Inclination of the plate, respectively the angle of platform, is 
controlled by standard position loop of DC machine. Permanent 
magnet DC machine is represented by following equations:
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Parameters of DC machines are listed in the appendix.

3.2	Position loop design

Angular position control with PI controllers was implemented 
in to Kinetis K60. The most important in this step is to ensure 
the prescribed behavior and set up correct dynamic response. 
Standard Dodd’s formula was applied in prescribed band width 
finding [8] in combination with pole placement method. The 
results of this approach describe comparison between simulation 
and real measurement Figure 4. Step response and bode plots for 
speed and position loop are shown below. 

From a practical standpoint, knowing how the system 
responds to Heaviside step function is important because this 
concept shows us systems transient phenomenon. Fast and stable 
systems such as in Figure 3 and Figure 4 with settling time 0.05 
sec are able to damp fast deviations. Bode plot analysis shows 
ability of the trajectory following. Any trajectory can be divided 
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Figure 2 a) Step response of Equation (8); b) Pole placement of Equation (8)

Figure 3 Axis inclination control via DC machine position loop
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_ _X A X B K Ball position dem K Xz R$ $ $ $= + -o ^ h 	 (12)

_ _X A B K X B K Ball position demR z$ $$ $= - +o ^ h 	 (13)

Where X is a  matrix of state variables (ball position, ball 
velocity), A  is a  system matrix, B is a matrix of input variables, 

The second control algorithm is based on a full state 
feedback. A state variable is one of the variables used to describe 
ability to accumulate energy which is speed and position of the 
ball. The general equation of the linear system with the state 
feedback is Equation (12). After the following adjustment occurs 
Equation (13).
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Figure 4 Step response and Bode diagram of a) Speed loop; b) Position loop
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Figure 5 a) Block diagram of proposed structure; b) Final form of investigated testbed
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measurable deviation ​ε  =  x − ​x ̂ ​​ into each system Equation (17). 
To determine the properties of the proposed structure, dynamic 
error system is important. By subtracting the observer matrix 
from the whole system matrix for one axis, we obtain a dynamic 
error system Equation (18). When time groves to infinity the 
errors and their derivations are equal to 0.
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This stability condition is met when eigenvalues of the 
dynamic error system are located in the left part of the complex 
plane, det [λ - A] = 0. The result is compared to the second 
order polynomial with the prescribed behavior Equation (19). 
The calculated constants of the observer are according to the 
Equation (20).
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The same approach for designing the parameters was used in 
all three stabilization techniques.

All techniques were set using pole placement method. Settling 
time resp., the bandwidth was chosen by Dodd’s formula. In the 
Figure 7 [9] there is a  comparison of stabilization structures, 
which were implemented on real platform Figure 5b). All three 
structures have the same settling time T

sts
=1sec. On the left side 

K
R
 is a  feedback gain matrix, K

z
 is a  compensatory input gain, 

and Ball_position_dem is demanded value of the ball’s position 
at resistive surface. To determine dynamic properties of the 
proposed structure, eigenvalues placement of M

CL
 are important. 

Due to the 
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stability of the system, the left side of the complex plane is 
selected. Eigenvalues are obtained by solving characteristic 
equation det [λ - A]=0. Subsequently, the result is compared to the 
polynomial with the prescribed behavior Equation (15). Searched 
constants K

1
, K

2
 Equation (16) have finally emerged.
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At this point, we are again using the final value theorem. 
There is a steady state error which will be compensated by the K

z
 

constant Equation (16).
 The last structure uses speed feedback from the state space 

observer. In the previous structures, the speed was obtained by 
differentiation of position. For the last structure, the derivation 
was replaced by a more complex observer. State observer 
reconstructs state variables by using a mathematical model of 
a controlled system. Observer equations are created by adding 

	
a) b)

c)
 Figure 6 Stabilization structures: a) PD controller; b) Full State Space Feedback, c) State Space Observer with State Space Feedback
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time of the observer (0.01sec) is too small in comparison to the 
dynamics of the entire structure (1sec).

Due to settling dynamics of the state space observer, the 
last structure shows the best results. The entire control diagram 
used for the testbed regulation is in the Figure 9b). The black 
part is position loop of DC machine. The blue belongs to 
the mathematical model of the ball at beam. The orange part 
represents the state space control low, and with purple color, 
the state space observer is highlighted. The two most important 
graphs are plotted for the analysis. 

In step response, the initial intersection in the negative 
position is seen. This is mostly due to the mechanical backlash 
of the system. The following increase and settlement is in a very 
good (Figure 8) accordance with the simulations of the structure 
in Figure 9b). Simulated and measured frequency characteristics 
are just as good as shown in Figure 8. The reference trajectory 
tracking is shown in Figure 9a).

of Figure 7 there is stabilization on zero reference after deflection 
from the equilibrium position. At right side, there is stabilization 
from the rest position, to the new equilibrium position. Position 
loop of DC machine for one axis is shown below. The position of 
the ball is stable in all graphs at the desired value. The different 
situation can be seen in the position loop of DC machine 
for each axis. In the control structure with PD and full state 
feedback, there is visible noise in axis position loop. This is due 
to the computation method for the ball speed. The speed is here 
obtained by derivation of the measured ball position. This means 
that the noise from the touch screen sensing is also transmitted to 
the desired position value for the investigated axis. The position of 
the ball is stable, but the entire platform vibrates due to the noise 
amplified by derivative amplification. This negative property was 
removed in the third structure. A smooth change of both positions 
is ensured by the structure of the state observer. The observer has 
a smoothing effect, acting as a filter, but adds a delay to the whole 
control. In our case, the delay is negligible because the settling 

Figure 7 Stabilization structures comparison
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behavior of the most successful structure is on the following link: 
https://www.youtube.com/watch?v=Rr90hb_Rn3M.
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6. 	Conclusion

We have developed control strategies for stabilizing a ball on 
a plate. The basic system in an open loop is unstable.  With minor 
modifications after applying linearization strategy, the system 
provides stable behavior. Linearization of the system is valid in 
very narrow operating range. The proposed system is capable of 
satisfying both intended goals. The controller was able to track 
the ball to the reference trajectory points. The presentation of the 
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 Figure 9 a) Trajectory tracking; b) Block diagram of control structure with PMDC position control

Appendix 

Table 1 Parameters of used PMDC

Sign Definition Value Unit

R
a

Armature winding resistance 5.32 Ω

L
a

Armature winding inductance 0.01534 H

ΨPM Linkage magnetic flux of PM 0.1432 Wb

J Rotor moment of inertia 0.0000414 kg.m2
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