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ORIGINAL RESEARCH ARTICLE

Peter Czimmermann - Michal Kohani*

CHARACTERISTICS OF CHANGES OF TRANSPORTATION
PERFORMANCE FOR PAIRS OF CRITICAL EDGES

When the robustness of a public service system design is tested, we can often use scenarios where possible random failures can occur

and they can influence the time the service is accessible which is provided for system users. The construction of a suitable scenario is based

on the choice of links of the transportation network which influence the system performance in a substantial way. In such scenarios one or

multiple arcs can be affected by this failure. In our contribution we present characteristics of pairs of critical arcs that can be used to develop

an algorithm for the creation of critical scenarios.
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1. Introduction

The characteristics of public service systems in transportation
networks are given by the location of its service centres. Examples
of such systems include emergency, health care and supply
systems. The service for users is realized on the shortest paths
between the users and service centres. A design of such a system
can be solved as a weighted p-median problem in a network. The
algorithms and methods for solving these types of problems are
known and can be found in [1], [2], [3].

However, the service systems are usually suggested for ideal
conditions, when the traverse time is constant for every edge. In
real transportation networks, various random events may occur.
These events can elongate the traverse time of the affected edges
(arcs) [4]. The collapse of an individual arc was studied in [5], [6],
[7]. Two characteristic functions were suggested for measuring
the system robustness regarding possible disruptive events on
network arcs. The network robustness index was studied in [6].
The network trip robustness was suggested in [7]. Characteristic
function of individual network arcs was also studied in [8].

In this paper, we focus on the characterization of pairs of
affected edges. We suggest an approach that allows us to compute
the function of the elongation of transportation performance
when two edges are affected by random events at the same time.

2. Definition of transportation performance

In this section we introduce basic definitions. We work with
the network G = (V,E,w,t), where Vis the set of vertices, E is the set
of edges, w(u) is the weight of the vertex u, and #(e) is the driving
time through the edge e. The driving time from vertex u to vertex
vis denoted by d(u,v) and it is the length of the shortest path from
u to v when we consider the times on the edges from E. Similarly,
we can define the value

d(u,X)zmin{d(u,v);veX} (1)
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for every non-empty subset of vertices X C V.

Let the set of customers be denoted by U and the set of
facilities be denoted by S, where UCV, ScCV. The
transportation performance [8] is

W=2Z.cow(u)-d(u,s) (2)

This expression is similar to the total weighted distance,
however we use travel times on edges, instead of distances.

3. Changes of the transportation performance

It is not hard to imagine situations when the travel time on the
edge is extended. In this section we describe the impact of such
extensions on transportation performance. We focus on the case
with two critical edges.

Let the set

Y:{el,e2,...,ek}gE (3)

be given. We suppose that 8, > 0(i = 1,2, ...,k) is an extension
of the driving on the edge e¢. We denote the transportation
performance with extended times

te)+8,,t(er)+8,,...,t(e) + 5, (4)
on edges of Y by

Wi (8,,6,...,61) (5)
We can see that W, is a function of k variables &,,8,,...,6,
with domain RY .
The case k = 1 is studied in [8]. We are concerned with the
case k = 2 and consider some possibilities for k£ > 2.
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Figure 1 Network from Example 1

Example 1. We consider the network G in Figure 1. Let
U={u,u,} and § = {v} . Transportation performance W (4,,9,) is
given by formulas:

. 446,+06,,if0<8,5.<1

2. 5+6,,ff 059, and 6. > 1 (6)
3. 5+46,,iff 059, and &, > 1

4. 6 otherwise

We can see that the following facts hold for every network
and pair of its edges.

Theorem 1. For the given vertex u, the transportation performance

is given by, at most, four formulas.

Proof. There are four cases to consider:

Case c, - the edges e, e, belong to the shortest path from u to

S for given values 0, 9,.

Case ¢, - the edge e, belongs (e, does not) to the shortest path

from u to S for given values 4, 9.

Case c, - the edge e, belongs (e, does not) to the shortest path

from u to S for given values 4, 9.

Case ¢, - the edges e, e, do not belong to the shortest path from

u to S for given values 9, d,.

The number of formulas is equal to the number of cases c,, ¢, ¢,

¢, that can occur. We denote the sets of points (d,, d,), for which

cases ¢, ¢, ¢,, ¢, hold, by A, A, A, A We can compare these sets
by the following relation:

A~ Aj & there exists point (4, b) €A, such that for all

(¢, d)e A/, we have a < ¢, b < d and at least one inequality is sharp.

It is possible to show by case by case analysis that the relationships

between the sets A, A\, A, A are in Figure 2. It is easy to consider

that every case is represented by one formula (we have one
formula for every set), as we can see below:

o case ¢ w(u) - (d,(u.S) +0,+d,), where d, (1,5) denotes the
length of the shortest path from u to S, when (9, 4,) €A,
(this path is the shortest among all paths from « to S, which
contain the edges e, and e,)

o casec;:w(u)-(d (uS)+9), where d (u,5) denotes the length
of the shortest path from u to S, when (3, 9,) €A,

o casec, w(u)-(d,(u,S) +9,), where d, (u,S) denotes the length
of the shortest path from u to S, when (3, 9,) €A,,

33—p.‘ﬁ1

A, A

Figure 2 Comparison of sets A, A, A,, A

* case ¢ w(u) - d (u,S), where d (u,S) denotes the length of the
shortest path from u to S, when (9, 4,) EA,.

Theorem 2. The function W(d.9,) is continuous and piecewise
linear function in two variables 9, d,.

Proof. Let the vertex u € U be given. Let the edges ¢, e, belong to
the shortest path from  to S. If the travel times on edges ¢, e,
increased by values 4, d,, then the travel time d (1,S) from u to
S is changed to d (u,S) + 0, + 9. If the value of §, achieves the level
which involves omitting the edge e,, then we obtain a new formula
for the travel time from u to S: d (4,S) + d,. Moreover, the

transition between these formulas is given by equality:

e are

d(M,S)+61+62:d1(M,S)+51 (7)

It follows from the equality that this transition is continuous.
The same can be checked for all cases. The general formula for
the transportation performance is

W)’(al,az):z w(u)-(d,(u,S)+a,-51+b,~5z) (8)

uet

where i €{0,1,2,3}: its value depends on (9,, 9,) €A, and
a,=b,=0,a=10=0,a,=0,b,=1 a,=b,= 1. It is known that
the sum of continuous functions is a continuous function and
from the general formula it follows that W (4,.0,) is piecewise
linear function.

3.1 Computation of transportation performance
for a given vertex u

It was mentioned in the proof of Theorem 2 that the general
formula for W(4.0,) is the sum of formulas derived for each
vertex from the set U. Hence, we show the approach for the
computation of formulas for every vertex from this set. We also
show the computation of boundaries of sets with the same
formula. Composition of these sets provides the partition of the
domain of W4 .0,). We show the approach which gives the
formula for transportation performance for a given vertex u € U.
1. We find the shortest path from « to S in G (we use values

0,=0,=0). The length of this path is d (u,S). Now, when

we carefully increase the values of 0, d, (the word carefully
means that the shortest path is not changed), we obtain these
possible starting formulas:
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cs—wlu) (d:(u,S)+ 6 +8.) The bounds of A; (when the case ¢, occurs) are
clawEu;-Edliu,S;+?; © 5.8.20

A d(u,8)+8) < do(u,S) (17

co—wlu)-do(u,S)

The starting formula is given by the occurrence of edges e,

and e, in shortest path for 4 =9,= 0.

2. We find out which cases (from ¢, ¢,, ¢;) can also occur, by
omitting the edges e, e,. Formulas for these cases are similar
to the formulas described above.

3. If the case ¢, occurs for §, = d,= 0, then the bounds of A, are

W(M)'(dz(M,S)+5l+52): W(”)'(dl(u,s)'f'Sx)

w(u)-(ds(u,S)+ 8+ 8.) = wlu)-(d2(u,S)+8,)  (10)
w(u) (ds(u,S)+6,+82)=wlu) do(u,s)
Hence, the set A, is given by bounds
6,6.20
s(u, »=d(u,
di(u,8)+68.<d (u,S) (n

d:(u,S)+ 68, < d.(u,S)
d(u,S)+68,+8.<dy(u,S)

The set A, (when the case ¢, occurs) is given by inequalities

8:(u,S)+8,>d (u,S)
dl(bl,S)+61 Sdz(u,5)+6z
d\(u,8)+ 8, < do(u,S)

(12)

Similarly, A, (when the case ¢, occurs) is given by

8,6.>0
d;(u,8)+6,=d>(u,S)
di(u,8)+8,=d.(u,8)+ 8,
dr(u,S)+8.=do(u,S)

(13)

The set A, (when the case ¢, occurs) is given by

5,8.>0
d;(u,S)+68,+8,=d,(u,S)
di(u,8)+8,=do(u,S)
dy(u,8)+ 8, >do(u,S)

(14)

4. If the case c| is the starting case, then the bounds of A, are

61,52 2 O
dl(bl,S)+61 Sdz(u,S)“l‘az
di(u,S)+ 6, <do(u,S)

(15)

Similarly, A, (when the case ¢, occurs) is given by

61,63 Z O
d1(M,S)+51 Sdz(l/{,S)"‘az
dy(u,8)+ 68, <do(u,S)

(16)

& (u,S)+8.<do(u,S)

5. The starting case ¢, is very similar to the previous starting
case.

6. Ifc, is the starting case, then we have only one set A given by
bounds ¢, 4, > 0.
Bounds for formulas of transportation performance can be

obtained from bounds computed for every vertex u € U.

4. Algorithms for computation of pairs of critical edges

In this section we introduce a fast algorithm, which finds
the set of critical edges in the case where the extensions of travel
times do not force us to avoid the critical edges.

We start with finding the pair of critical edges, when the
values 0, and d, are small - we do not avoid any edge in the shortest
path.

1. Find the shortest paths from u to S for all u €U =
={u,, uy .., u ). The set of all such paths is denoted by
P={p, py -, p,} (The starting vertices of these paths are
from U.)

2. For every edge e we have

s(e)=22" wlu)si(e), where Sl(e):{l,ifeep,

0.ifecp

The sum is taken over all vertices u € U such that the edge e is the

edge of the shortest path from the set P with the starting point u.

3. We order the edges of G by s(e) decreasingly. The first two
edges form a critical pair of edges. This is a polynomial
algorithm which can be generalised for every k > 2. Let us
suppose that the extensions of times are too large, we need to
find the new shortest paths without the critical edges. It is, in
general, an NP-hard problem. However, for k = 2, we can solve
the problem by brute force.

5. Conclusions and further research

We studied a possible characterization of critical pairs of
edges in transportation networks. We suggested the approach
which allows us to determine the characteristic function of
the time elongation of transportation performance for pairs of
affected edges.

Future research in this field will focus on the tests on real
transportation networks and study the elongation of transportation
performance as a function of k& > 2 variables - it means that we
will also consider scenarios with k > 2 critical edges.
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