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1.	 Introduction

The characteristics of public service systems in transportation 
networks are given by the location of its service centres. Examples 
of such systems include emergency, health care and supply 
systems. The service for users is realized on the shortest paths 
between the users and service centres. A design of such a system 
can be solved as a weighted p-median problem in a network. The 
algorithms and methods for solving these types of problems are 
known and can be found in [1], [2], [3].

However, the service systems are usually suggested for ideal 
conditions, when the traverse time is constant for every edge. In 
real transportation networks, various random events may occur. 
These events can elongate the traverse time of the affected edges 
(arcs) [4]. The collapse of an individual arc was studied in [5], [6], 
[7]. Two characteristic functions were suggested for measuring 
the system robustness regarding possible disruptive events on 
network arcs. The network robustness index was studied in [6]. 
The network trip robustness was suggested in [7]. Characteristic 
function of individual network arcs was also studied in [8].

In this paper, we focus on the characterization of pairs of 
affected edges. We suggest an approach that allows us to compute 
the function of the elongation of transportation performance 
when two edges are affected by random events at the same time.

2.	 Definition of transportation performance

In this section we introduce basic definitions. We work with 
the network G = (V,E,w,t), where V is the set of vertices, E is the set 
of edges, w(u) is the weight of the vertex u, and t(e) is the driving 
time through the edge e. The driving time from vertex u to vertex 
v is denoted by d(u,v) and it is the length of the shortest path from 
u to v when we consider the times on the edges from E. Similarly, 
we can define the value

, , ;mind u X d u v v X!=^ ^h h" , 	 (1)

for every non-empty subset of vertices X V1 .
Let the set of customers be denoted by U  and the set of 

facilities be denoted by S, where U V1 , VS 1 . The 
transportation performance [8] is

 
,W w u d u Su U $R= ! ^ ^h h 	 (2)

This expression is similar to the total weighted distance, 
however we use travel times on edges, instead of distances. 

	

3.	 Changes of the transportation performance
	
It is not hard to imagine situations when the travel time on the 

edge is extended. In this section we describe the impact of such 
extensions on transportation performance. We focus on the case 
with two critical edges. 

Let the set

, , ,Y e e e Ek1 2 f 3= " , 	 (3)

be given. We suppose that , , ,i k0 1 2i f$d =^ h  is an extension 
of the driving on the edge e

i
. We denote the transportation 

performance with extended times

, ,,t e t e t ei k k21 2 fd dd + ++^ ^ ^h h h 	 (4)

on edges of Y by

, , ,WY k1 2 fd d d^ h 	 (5)

We can see that WY  is a function of k variables , , , k1 2 fd d d  
with domain Rk+ . 

The case k = 1 is studied in [8]. We are concerned with the 
case k = 2 and consider some possibilities for k > 2. 
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•	 case c
0
: w(u) . d

0 
(u,S), where d

0 
(u,S) denotes the length of the 

shortest path from u to S, when (δ
1
, δ

2
)! Δ

0
.

Theorem 2. The function W
Y
(δ

1
,δ

2
) is continuous and piecewise 

linear function in two variables δ
1
, δ

2
. 

Proof. Let the vertex u! U be given. Let the edges e
1
, e

2
 belong to 

the shortest path from u to S. If the travel times on edges e
1
, e

2
 are 

increased by values δ
1
, δ

2
, then the  travel time d

 
(u,S) from u to 

S is changed to d
 
(u,S) + δ

1
 + δ

2
. If the value of δ

2
 achieves the level 

which involves omitting the edge e
2
, then we obtain a new formula 

for the  travel time from u  to S: d
1 

(u,S) + δ
1
. Moreover, the 

transition between these formulas is given by equality:

, ,d u S d u S1 2 1 1d d d+ + = +^ ^h h 	 (7)

It follows from the equality that this transition is continuous. 
The same can be checked for all cases.  The general formula for 
the transportation performance is

, ,W w u d u S a bY i i i
u U

1 2 1 2$ $ $d d d d= + +
!

^ ^ ^ ^h h h h/ 	 (8)

where , , ,i 0 1 2 3! " , ; its value depends on (δ
1
, δ

2
)! Δ

i
 and  

a
0 
= b

0 
= 0, a

1 
= 1, b

1 
= 0, a

2 
= 0, b

2 
= 1, a

3 
= b

3 
= 1. It is known that 

the sum of continuous functions is a  continuous function and 
from the general formula it follows that W

Y
(δ

1
,δ

2
) is piecewise 

linear function.

3.1 Computation of transportation performance  
for a given vertex u
 
It was mentioned in the proof of Theorem 2 that the general 

formula for W
Y
(δ

1
,δ

2
) is the sum of formulas derived for each 

vertex from the set U. Hence, we show the approach for the 
computation of formulas for every vertex from this set. We also 
show the computation of boundaries of sets with the same 
formula. Composition of these sets provides the partition of the 
domain of W

Y
(δ

1
,δ

2
). We show the approach which gives the 

formula for transportation performance for a given vertex  u! U.
1.	 We find the shortest path from u  to S  in G (we use values  

δ
1 

= δ
2 

= 0). The length of this path is d
i 
(u,S). Now, when 

we carefully increase the values of δ
1
, δ

2
 (the word carefully 

means that the shortest path is not changed), we obtain these 
possible starting formulas:

Example 1. We consider the network G in Figure 1. Let  
U = {u

1
,u

2
} and S = {v} . Transportation performance W

Y
(δ

1
,δ

2
) is 

given by formulas: 

1.	 4 1 2d d+ + , if ,0 11 2# #d d
	 	 	
2.	 5 1d+ , if 0 1# d  and  12 2d 		               (6)

3.	 5 2d+ , if 0 2# d  and  11 2d 				  

4.	 6  otherwise

We can see that the following facts hold for every network 
and pair of its edges.

Theorem 1.  For the given vertex u, the transportation performance 
is given by, at most, four formulas.
Proof. There are four cases to consider:
Case c

3
 - the edges  e

1
, e

2
 belong to the shortest path from u  to 

S for given values δ
1
, δ

2
.

Case c
1
 - the edge e

1
 belongs (e

2
 does not) to the shortest path 

from u to S for given values δ
1
, δ

2
.

Case c
2
 - the edge e

2
 belongs (e

1
 does not) to the shortest path 

from u to S for given values δ
1
, δ

2
.

Case c
0
 - the edges  e

1
, e

2
 do not belong to the shortest path from 

u to S for given values δ
1
, δ

2
.

The number of formulas is equal to the number of cases c
3
, c

1
, c

2
, 

c
0
 that can occur. We denote the sets of points (δ

1
, δ

2
), for which 

cases c
3
, c

1
, c

2
, c

0
 hold, by Δ

3
, Δ

1
, Δ

2
, Δ

0
. We can compare these sets 

by the following relation:
Δ

i
" Δ

j 
+  there exists point (a, b) ! Δ

i
 such that for all  

(c, d)! Δ
j
 we have a ≤ c, b ≤ d and at least one inequality is sharp. 

It is possible to show by case by case analysis that the relationships 
between the sets Δ

3
, Δ

1
, Δ

2
, Δ

0
 are in Figure 2. It is easy to consider 

that every case is represented by one formula (we have one 
formula for every set), as we can see below:
•	 case c

3
: w(u) . (d

3 
(u,S) + δ

1 
+ δ

2
), where d

3 
(u,S) denotes the 

length of the shortest path from u  to S, when (δ
1
, δ

2
)! Δ

3
, 

(this path is the shortest among all paths from u to S, which 
contain the edges e

1
 and e

2
)

•	 case c
1
: w(u) . (d

1 
(u,S) + δ

1
), where d

1 
(u,S) denotes the length 

of the shortest path from u to S, when (δ
1
, δ

2
)! Δ

1
,

•	 case c
2
: w(u) . (d

2 
(u,S) + δ

2
), where d

2 
(u,S) denotes the length 

of the shortest path from u to S, when (δ
1
, δ

2
)! Δ

2
,

Figure 1 Network from Example 1 Figure 2 Comparison of sets Δ
3
, Δ

1
, Δ

2
, Δ

0
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The bounds of Δ
0
 (when the case c

0
 occurs) are

,

, ,

, ,

d u S d u S

d u S d u S

01 2

1 1

2 2 0

0

$

#

#

d d

d

d

+

+^
^ ^

^h
h h

h
	 (17)

5. 	 The starting case c
2
 is very similar to the previous starting 

case.
6. 	 If c

0
 is the starting case, then we have only one set Δ

0
 given by 

bounds δ
1
, δ

2  
≥ 0.

Bounds for formulas of transportation performance can be 
obtained from bounds computed for every vertex u! U.

4.	 Algorithms for computation of pairs of critical edges
	
In this section we introduce a  fast algorithm, which finds 

the set of critical edges in the case where the extensions of travel 
times do not force us to avoid the critical edges.

We start with finding the pair of critical edges, when the 
values δ

1
 and δ

2
 are small - we do not avoid any edge in the shortest 

path.

1. Find the shortest paths from u
i
 to S  for all u

i
! U =  

= {u
1
, u

2
, ... , u

m
}. The set of all such paths is denoted by  

P = {p
1
, p

2
, ... , p

m
}. (The starting vertices of these paths are 

from U.)
2. 	 For every edge e we have

s e w u s ei i
i

m

1
=

=
^ ^ ^h h h/ , where 

,

,
s e

if e p

if e p

1

0
i

i

i

!

!
=^ h ( 	 (18)

The sum is taken over all vertices u! U such that the edge e is the 
edge of the shortest path from the set P with the starting point u. 
3. 	 We order the edges of G by s(e) decreasingly. The first two 

edges form a  critical pair of edges. This is a  polynomial 
algorithm which can be generalised for every k  > 2. Let us 
suppose that the extensions of times are too large, we need to 
find the new shortest paths without the critical edges. It is, in 
general, an NP-hard problem. However, for k = 2, we can solve 
the problem by brute force.

5. 	Conclusions and further research
	
We studied a  possible characterization of critical pairs of 

edges in transportation networks. We suggested the approach 
which allows us to determine the characteristic function of 
the time elongation of transportation performance for pairs of 
affected edges.

Future research in this field will focus on the tests on real 
transportation networks and study the elongation of transportation 
performance as a function of k > 2 variables – it means that we 
will also consider scenarios with k > 2 critical edges.
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The starting formula is given by the occurrence of edges e
1
 

and e
2
 in shortest path for δ

1 
= δ

2 
= 0.

2. 	 We find out which cases (from c
1
, c

2
, c

0
) can also occur, by 

omitting the edges e
1
, e

2
. Formulas for these cases are similar 

to the formulas described above.
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3
 occurs for δ
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Hence, the set Δ
3
 is given by bounds
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The set Δ
1
 (when the case c

1
 occurs) is given by inequalities
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Similarly, Δ
2
 (when the case c

2
 occurs) is given by

,

,

, ,

, ,

,d u S

d u S d u S

d u S d u S

d u S

01 2

3

1 21

2 2 0

1 2

2

$

$

$

$

d d

d

d

d

d+

+

+

+

^

^
^

^

^
^

h

h
h

h

h
h 	 (13)

The set Δ
0
 (when the case c

0
 occurs) is given by
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4. 	 If the case c
1
 is the starting case, then the bounds of Δ

1
 are
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Similarly, Δ
2
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