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1. 	Introduction

Vehicle route planning is an inherent part of the decision 
making process of the all subjects providing a transport network 
service (such as cleaning and maintenance of roads, municipal 
waste collection, separated municipal waste collection etc.). 
Generally, the underlying problem is to design service vehicles 
routes while taking into account the chosen optimization criterion 
and respecting all of the substantial constraints resulting from 
the real traffic, too. Particularly, the most commonly used 
optimization criterion for designing service vehicle routes is 
minimizing the total distance travelled. In general, tasks relating 
to the route planning and optimization can be divided into two 
basic groups.  The first one includes such problems that solve 
a point in a transport network - a vertex (customer, depot etc.) [1], 
[2] and the aim of these tasks is to find the minimum Hamiltonian 
cycle. The next group represents such tasks, in which the subject 
of service is a road - an edge (snow cleaning, street cleaning etc.) 
and the basic objective is to determine an Eulerian path. In this 
paper, we limit our focus to problems of the second set of tasks. 

  

2.	 Basic problem formulation

Let the real transport network be represented by graph  
N (V, E, l) with three attributes: V  = 1, ..., m as set of vertices,  
E = 1,..., m denotes a set of edges and l

ij
 (where i, j! V)  represents 

an edge evaluation and denote the road length (in kilometres). 
Generally, the aim is to find a route that passes through each edge 
at least once with the minimal length and also begins and ends at 
the depot. This problem was first formulated by Mei-Ko-Kuan and 
in the professional literature is known as the Chinese Postman 
Problem [3]. Assuming that all conditions for existence of 
Eulerian path are met the Edmonds’ algorithm [4] can be used to 
find a  solution of this problem. However, if some of these 
conditions fails to be met, the application of an alternative 

approach becomes necessary to eliminate this shortage. 
Principally, it is vital to identify those edges, which are used 
repeatedly on the route. In practice, these are unproductive 
passages through some sections. For this, the so called minimum 
matching principle [5] is commonly applied to identify the 
repeatedly included edges, in detail in [6]. Nevertheless, the 
disadvantage of this approach is the necessity to design some 
substitute transport network, in which the duplicate edges can be 
identified by using the minimum matching principle. In this 
respect, we consider more appropriate procedure for identifying 
duplicate edges by determining the number of passages through 
each edge of the transport network [5]. Above all, it is not 
necessary to create a substitute network in the framework of this 
approach. Information in the matrix of distances l

ij
 corresponding 

with the default network N is included in the mathematical model. 
In addition, this matrix contains only values corresponding to the 
vertices that are connected by the edge. This fact is expressed as 
“exists” l

ij
.

2.1 Basic problem formulation - mathematical model

Mathematical model of the above mentioned issues can be 
formulated as follows:
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The objective function (1) gives e.g. the total distance travelled 
during the waste municipal collection. The variable z

ij
 is an integer 

representing the number of passages through the edge ij. The 
conditions (2) ensure that every existing edge (exists l

ij
) is included 

at least once. The condition (3) ensures that each visited vertex 
will be subsequently abandoned.  The obligatory condition (4) 
indicates that the variable z

ij
 is a nonnegative integer. Numerical 

experiments with this model were published in [6].

3.	 Mathematical model for real networks - modified 
approach

The mathematical model (1) - (4) can be used only for 
undirected transport network without further specific requirements. 
However, with regard to the practice, it is necessary to take into 
account several other requirements:
•	 existence of a  mixed transport network, which contains 

directed and undirected edges (e.g. one-way roads in practice);
•	 existence of a wider transport network, in which the service of 

some edges is required (e.g. this corresponds to the situation 
when the certain set of roads is served and other roads can be 
used for efficient passages).
Taking into account the above-formulated requirements of the 

real traffic, both the approach and the mathematical model are 
presented in the following text.

3.1 Formulation of modified task formulation

The specified network N (V, E, l) defines a mixed graph. This 
network has three attributes and can be divided to several subnets. 
In our case there are two subnets.  The first one N

1
 (V

1
, E

1
, d) 

represents a  set of edges, which have to be served at least once. 
The second subnet N

2
 (V

2
, E

2
, e) determines a set of edges, which 

can be used for efficient passages. The constant l
ij
 denotes edge 

evaluation ij, d
ij
1 l

ij
 and e

ij
1 l

ij
. Hence, the mutual relation can be 

expressed mathematically as follows: N = N
1
jN

2
.  The aim of this 

problem is to find such route, which passes through all the edges 
of the subgraph N

1
 at least once with possibility of using the edges 

from the subgraph N
2
 so that the total length is minimal. The 

request route starts and ends at the initial vertex.
The following requirement must be met at the same time: 

firstly, the directed edges, located both in subnet N
1
 and N

2
, can be 

passed only in the edge direction. This requirement corresponds 
to the one-way roads in practice. 

The model case is presented in Figure 1, where the network N 
is created by 8 vertices and 16 edges. Subnet N

1
 (indicated by solid 

lines) represents the edges, which have to be served at least once. 
The subnet N

2
 (indicated by dashed lines) shows the edges, which 

may be used for  efficient passages.

3.2 Sufficient preconditions to admissibility  
of the solution
Unlike the classical version of the Rural Postman Problem 

[7], the strongly connected subnet N
1
 is a  basic assumption of 

the approach presented in this paper. If this subnet is not strongly 
connected, the resulting solution obtained by the proposed method 
may include subnets in the form of isolated closed trails. However, 
assuming the strongly connected subnet N

1
, this situation cannot 

occur. This claim is described in detail and confirmed by the proof 
in the following text. There are introduced two auxiliary concepts 
to demonstrate this proof:
•	 an obligatory edge - an edge belonging to the subset E

1
,

•	 an obligatory vertex - a vertex that incidents with an obligatory 
edge at least once.
Assumptions:

1.	 The edge evaluation is the set of positive real numbers.
2.	 All just required obligatory vertices are located in the 

subgraph N
1
.

3.	 The subgraph N
1
 is strongly connected, thus for each two 

vertices i,  j it is possible to find an oriented path from i to j 
and j to i, too.
The statement: The resulting route obtained by the proposed 

method is a  single closed trail including all required obligatory 
edges, therefore it does not include two or more isolated closed 
trails that do not have a common vertex.

Proof by contradiction:
1.	 Let the resulting route contains an isolated closed trail that 

does not have a common obligatory vertex with a rest of the 
route.

2.	 Both isolated closed trail and the rest of the route must 
contain a obligatory edge with at least one positive evaluation.

3.	 However, all obligatory vertices belong to the subgraph N
1
 that 

is strongly connected and therefore there is a  route, which 

Figure 1 The network N with marked subnets N
1
 and N

2
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is composed only of the obligatory edges and connects any 
selected obligatory vertex from the isolated closed trail with 
one of the final (obligatory) vertices of the obligatory edge in 
the rest of the route. On this route, there must necessarily be 
an obligatory vertex, which is the final vertex of the obligatory 
edge of the isolated closed trail and at the same time, it is the 
final vertex of the obligatory edge that belongs to the rest of 
the route. It is a dispute with that assumption.

4. 	Mathematical model of the modified task

To find the optimal route, it is possible to use a mathematical 
model that determines, how many times the edge ij is used in the 
route. This model (5) - (9) is based on the previously mentioned 
model (1) - (4). Data corresponding to the subnets N

1
 and N

2
 enter 

into the mathematical model. The evaluation of existing edges 
in subnet N

1
 is represented by a  constant d

ij
 and the evaluation 

of existing edges in subnet N
2
 is represented by a  constant e

ij
. 

This method of constant determination ensures that the existing 
edges are used and what is more, it corresponds to the input 
matrices, which are sparse. The dynamic declaration is used in the 
computational environment.

The possibility of passages through the edge against its 
direction is penalized by a prohibitive constant T, the corresponding 
relationship is defined in [6]. An example of the sparse matrix with 
the prohibitive constant T corresponding to Figure 1 is given in 
Table 1.

The number of the edge passages ij - mathematical model [8]:
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The objective function (5) gives e.g. the total distance travelled 
during the service route. The first part of the expression is the 
distance traveled during the edges service of the subnet N

1
, and the 

second part represents the distance traveled by using edges from 
the subnet N

2
. The variable z

ij
 is an integer variable that expresses 

the number of edge runs in the subnet N
1
. The variable y

ij
 is an 

integer variable which determines the number of passages through 
edges of the subnet N

2
. Condition (6) ensure that each existing 

edge in the subnet N
1
 is included in the route at least once. The 

condition (7) means that each visited vertex will be subsequently 
abandoned. The obligatory conditions (8) and condition (9) 
ensure that variables z

ij
 and y

ij
 may be only the nonnegative integer.

5. 	Computational experiments

This chapter focuses on experiments, which were realized 
with mathematical model  (5)-(9) in computational environment 
Xpress-IVE [9], [10]. Prior to presenting final results, the solution 
procedure is given by an illustration example. Let us suppose 
the network as depicted in Figure 1. Firstly, the solution may be 
obtained assuming that it is not possible to use the other edges 
than the edges of the subnet N

1
. The optimal route (1-4-5-8-5-2-3-5-

2-4-1-6-1) length corresponding to this solution is 3.6 km.
Secondly, the optimal solution can be also achieved by using 

edges of the subnet N
2
. This optimal route (1-6-4-5-3-2-7-8-5-2-4-1) 

with length 2.9 km is shown in Figure 2. In accordance with this 

Table 1 The model example

Input data

ij 14 16 23 24 25 32 35 41 42 45 52 53 54 58 61 85

d
ij 0.4 0.3 0.3 0.2 T 0.3 0.4 0.4 0.4 0.1 0.2 0.4 0.1 0.4 0.3 0.4

ij 12 21 27 38 46 47 57 64 67 72 74 75 76 78 83

e
ij T 0.1 0.1 0.1 0.3 0.2 0.3 0.3 0.6 T 0.2 0.3 0.6 0.2 T

Figure 2 The use of edges of the subnets N
1
 and N

2
 in the optimal solution
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6. 	Conclusion

This present paper deals with the planning of the optimal 
service vehicle route using the integer programming. We have 
introduced the mathematical model with constraints corresponding 
to the requirements of a real traffic. In particular, the constrains 
are the existence of a  mixed transport network that contains 
one-way roads and the existence of a wider transport network, in 
which the only selected edges are used with possibility of effective 
passages. Data for the presented numerical experiments were 
both based on the real traffic values and artificially generated 
by the software Wolfram Mathematica. On the basis of these 
experiments performed in the computational environment Xpress-
IVE was found, that this procedure can be appropriately applied 
in practice. As shown by the results, average savings computed by 
the mathematical model (5)-(9) are 13 % in the case of variant V2 
comparing to the variant V1. While using the real data, achieved 
savings of the total distance traveled are 4.3 %. Thanks to the 
effective passages, the objective function has been decreased from 
280 km to 268 km.
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solution, 3 edges of the subnet N
2
 are used for the effective vehicle 

transits. When comparing to the original solution, the achieved 
saving is 0.7 km, which is 12.1 %. 

In the following we will present such results, which were 
realized using the mathematical model (5)-(9) on a  set of 11 
nontrivial tasks [11], [12]. For the sake of usage, the size and 
conditions of these tasks correspond to real problems. For the first 
ten tasks, all input data were generated by Wolfram Mathematica 
[13], [14]. Input data for last task were obtained from the real 
traffic of municipal waste collection, which are provided by 
Technical services in Olomouc.  All calculations have been made 
for two variants (V1 and V2). To design the optimal route, the 
first variant enables using only edges of the subnet N

1
 and the 

second one allows to use edges from the subnet N
2
. Results with 

experiments 1-10 are summarized in Table 2 and Table 3. Results 
with the experiment 11 are summarized in Table 4.

Each of the experiments 1-11 shown in Table 2, Table 3 and 
Table 4 are characterised briefly by the following aspects: the 
number of vertices / the number of edges / the number of one-way 
streets and it is divided into two variants of solution V1, V2. The 
basic network N

1
 is used in the variant V1 (the number of edges 

/ the number of one-way streets in the network N
1
). The second 

variant V2 works with the networks N
1
 and N

2
 (the number of 

edges / the number of one-way streets in N
2
). The total route 

length (in km) is stated in each of the variant. Furthermore, the 
percentage improvement of V2 compared to V1 is shown for each 
experiment. The computation time of all experiments was about 
2 seconds.

Table 2 Results of numerical experiments 1 - 6

Exp. 1: (133 vert. / 168 edg. / 8 one-way) Exp. 4: (114 vert. / 147 edg. / 15 one-way)

V1
104 / 3

V2
64 / 5

V1
99 / 8

V2
48 / 7

108.3 [km] 82.1 [km], 24.2 % 70.3 [km] 67.1 [km], 4.6 %

Exp. 2: (128 vert. / 166 edg. / 18 one-way) Exp. 5: (102 vert. / 126 edg. / 7 one-way)

V1
130 / 10

V2
36 / 8

V1
84 / 4

V2
42 / 3

112.3 [km] 95.8 [km], 14.7 % 62.1 [km] 57.6 [km], 7.2 %

Exp. 3: (72 vert. / 98 edg. / 12 one-way) Exp. 6: (104 vert. / 131 edg. / 6 one-way)

V1
70 / 5

V2
28 / 7

V1
86 / 3

V2
45 / 3

58.6 [km] 50 [km], 14.7 % 69.6 [km] 66.9 [km], 3.9 %

Table 3 Results of numerical experiments 7 - 10

Exp. 7: (185 vert. / 239 edg. / 9 one-way) Exp. 9: (157 vert. / 213 edg. / 10 one-way)

V1
139 / 7

V2
100 / 2

V1
126 / 7

V2
87 / 3

112.3 [km] 95.9 [km], 14.6 % 90.5 [km] 77.8 [km], 14 %

Exp. 8: (147 vert. / 186 edg. / 8 one-way) Exp. 10: (139 vert. / 186 edg. / 7 one-way)

V1
123 / 5

V2
63 / 3

V1
122 / 5

V2
64 / 2

96.9 [km] 82.9 [km], 14.4 % 90.4 [km] 74.4 [km], 17.7 %

Table 4 Results of numerical experiment - 11 (real problem)

Exp. 11: (3706 vert. / 6446 edg. / 1012 one-way)

V1
2063 / 249

V2
4383 / 763

280 [km] 268 [km], 4.3 %
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