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1. 	 Introduction

The information on any engineering, physical, or other 
phenomenon, is represented in the signal by changes over time of 
the current value of the quantity described by the signal. A large 
number of methods can be applied to the measured signal in the 
time domain. 

In many applications, direct evaluation of the time-amplitude 
representation is neither easy nor advantageous. For this reason, 
the signal can be transformed from the time-domain into another 
one. In some cases, important information can be obtained 
from the frequency domain. Fourier transform-based methods 
are the most frequently used ones. Thus, Fourier transform, 
its modifications and some of the parametric methods are the 
well suited techniques for processing stationary (at best ergodic 
or periodic) signals. They can even be used to analyse the non-
stationary signals if it is important to know only the frequency 
components contained in the entire signal. This, of course, gives 
no information on the time at which they occur. To localise 
such frequency components in time, some other transforming 
methods and other computational techniques have to be used. If 
the information sources from the time and frequency domains are 
combined one can use so called time-frequency transformations 
[1], [2]. This enables determination of the frequency as a function 
of time. The time-frequency transformations can be divided in two 
basic groups [3], [4]:
•	 Linear (including mainly short Time Fourier Transformation, 

Wavelet Transformation, etc.) 
•	 Non-linear (including mainly Wigner-Ville transformation, 

quadratic Cohen transformations, affine and hyperbolic 
transformations, eventually some further special proceedings).
Advantages of the linear transformations are mainly the speed 

of calculation and satisfactory time-frequency distribution. The 
main disadvantage of the linear transformation is the fact that 
resulting differentiation in time and frequency is limited by the 
so-called Heisenberg principle of uncertainty. Hence, the 

component of the signal cannot be presented as a point in time-
frequency space. It is therefore possible to state only its position 
inside the rectangle D t . D f in a given time-frequency area [5].

A characteristic feature of non-linear transformations is the 
fact that their resulting differentiation in time and frequency is 
not limited by the Heisenberg principle of uncertainty. This fact 
includes the high distinguishing ability in the time-frequency level 
that gives rise to “precise” localisation of important frequency 
components in time.

2.	 The Wigner-Villa’s transformation

The Wigner´s distribution was proposed in 1932 by Professor 
Wigner in the field of quantum physics and about 15 years later, it 
was adapted for the area of ​​signal analysis by the French scientist 
Ville. The Wigner-Ville transformation is defined for the time-
frequency domain by relation [6], [7]
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where ‘*’ represents a complex conjunction, t is time, τ is shift along 
the time axis, x is time representation of the signal x(t) and WVT

x
(t,f) 

is a time-frequency representation of the input signal. Equation (1) 
shows that it is essentially the Fourier transformation of relation  
x(t+τ/2)·x*(t- τ/2), so the functions x(τ/2) and the complex 
conjugate of x*(-τ/2)  at some point in time t. From Equation 
(1) it is also apparent that the Wigner-Ville transformation is  
a  complex function in the time-frequency space. Similarly, one 
gets the equation for the calculation in the frequency domain. 
If the discrete data sequence is processed, it is necessary to 
modify the integral equation mentioned above (1) in the form of 
summation.

Unlike the other linear methods (for example the short time 
Fourier transformation), in which the resolution is limited by 
a  window function, the Wigner-Ville spectrum provides a  good 
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where the symbol d represents delta function, ω
µ
 and ω

d
 are the 

geometric center, or the distance between the two sinusoidal 
functions in the frequency plane, respectively, given by:

2 d
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Equation (7) fully corresponds to Equation (4) and it 
means that in the time-frequency plane the contributions of the 
examined signal are concentrated at the frequency ω

1
, ω

2 
and also 

to nonzero frequency ω
µ
. 

With the number of individual frequency components N, 

contained in the analyzed signal, one gets the total number of 

contributions from interference N
N 1
2$
-^ h

. To eliminate this 

effect certain adjustments of the Wigner-Ville transformation can 

be used for certain types of signals.

In principle, there are two reasons to modify the basic 
properties of the Wigner-Ville transformation. The first reason is 
that in practice it is not possible to integrate from -∞ to +∞, but the 
calculation can be carried out only for limited signals. The second 
reason is to try to eliminate the effect of the cross-components, 
which often oscillate heavily. Restrictions of both problems can be 
achieved by calculating the modified Wigner-Ville transformation 
(often called pseudo or smoothed) by equation [7], [9] 
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where the function h(τ) is a window function with maximum at 
τ = 0. Such a  solution quite effectively suppresses interference 
(smoothed), but deteriorates the resolution. The smoothed 
Wigner-Ville transformation is therefore a  certain compromise 
between smoothing and resolution. For the better explanation, 
consider a  signal composed of the two sine waves according to 
the Equation (3). Suppose that, parameter α is set by expansion of 
function h(τ). The smoothed Wigner-Ville transformation of such 
a signal can be analytically expressed by the following relation: 
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For the practical presentation of these conclusions, 
a simulated signal, composed of the two sine waves of frequencies 
f

1
 = 5 Hz and f

2
 = 20 Hz and amplitude 0.5 V, based on equation 

(3), was used. It should be noted that the signal is technically 
stationary. Significant frequency components in the signal occur 
throughout the implementation. 

At this signal the classical Wigner-Ville transformation was 
first applied, later the smoothed version ones. For the analysis, 
pictures (Figure 1 and Figure 2) were used, which consist of a trio 
of graphs. The top graph shows the time course of amplitude of 
changes in a physical quantity (in this case the voltage). The lower 

resolution both in the frequency and in time domain. The 
important feature here is that the calculation is not limited by 
Heisenberg uncertainty principle. The Wigner-Ville distribution 
satisfies the time-frequency marginal according to Equation (2) 
[6], [8].

WVT , d xt t 2~ ~ =^ ^h h#   

and WVT t, d X 2~ ~ ~=^ ^h h# 	 (2)

where WVT(t,ω) is the Wigner-Ville transformation, x(t) is 
time signal, X(ω) is Fourier transformation of a  time signal 
x(t), t is time and ω is angular frequency. Other properties of  
the Wigner-Ville distribution are - time shift invariant, frequency 
modulation invariant, synchronous invariant time shift and 
frequency modulation, time scaling.

Although the calculation of the coefficients of the Wigner-
Ville transformation is not limited by the Heisenberg’s 
uncertainty principle, certain problems may arise in calculating 
multicomponent signal, which is generated by the sum of two or 
more signals. The signal, which arises from additive combination 
(sum) of signals x

1
 and x

2
, is now considered according to 

equation
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For the Wigner Ville transformation subsequently applies the 
following relation
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where the symbol “Re” stands for the real part and with keeping 
equality W

12
 = W

21
 one obtains:

 
W t, x x e dt t2 21

j f* t2
2 2 1$ $ $~ x x x= + - $ $ $ $

3

3
r

-

-^ a a ^h k k h# 	 (5) 

It is obvious that the Wigner-Ville transformation of the 
sum of the signals is not equal to the sum of the Wigner-
Ville transformation of signals. There is an additional term 
2.Re{W12(t,ω)}. This addition may be called interference or 
contribution to the cross-component. Based on the fact that the 
autocorrelation function is a bilinear operation on the processed 
signal and when it is formed, there are “false” contributions from 
the aforementioned cross-component in the final calculation 
of the time-frequency spectrum display, which then deteriorate 
the reproducibility of the view. For a  better explanation of the 
problem defined above, consider now the signal composed of the 
two sine waves of frequencies f

1
 = 5 Hz and f

2
 = 20 Hz according 

to the equation 

X A e A et t tj j
1 2

1 2$ $= +$ $ $ $~ ~^ h 	 (6)

The Wigner-Ville transformation of such a  signal can be 
analytically expressed as
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Figure 3 View of the rail fastening sample

Frequency response functions were calculated from the 
response signals due to normalization to the excitation signal. 
Those were recalculated by the inverse Fourier Transform into 
the time domain. In this way, the normalized time course of 
oscillation acceleration was obtained. This method, including 
instrumentation, is described in detail in the literature [8], [10]. 
Analysis in time, frequency and time-frequency domain was used 
to evaluate the measured data. The Fourier transform was used 
for the analysis in the frequency domain. A  procedure, based 
on application of the Wigner-Ville transformation, was used for 
analysis in the time-frequency domain.

Time histories of the impulse response function, recorded by 
accelerometers, located on the rail foot, are depicted in the upper 
graph of Figure 4. The left graph of Figure 4 shows the amplitude 
spectrum calculated by applying the Fourier transform. There are 
six distinct frequencies (200 Hz, 600 Hz, 1.7 kHz, 1.9 kHz, 3.2 
kHz and 3.3 kHz). 

The time-frequency amplitude spectrum, estimated by 
application of the Wigner-Ville transformation from the impulse 
response function, is depicted in the middle graph in Figure 4.  
As shown in this graph, the time history of important frequency 
components essentially differs. As can be seen from this graph, 
the time occurrence of significant frequency components varies 
considerably. The 1.9 kHz frequency component acquires the 
highest values for a  relatively long time (relative to other 

left graph shows the amplitude spectrum calculated by direct 
application of the Fourier transformation of the signal. 

In the middle graph there is a 3D representation of the time-
frequency course of amplitude spectrum computed by application 
of the Wigner-Ville transformation. The spectral data are shown 
in different colours. Note that the maximum value is marked as 
black. Figure 1 shows calculation results of classical the Wigner-
Ville transformation signal according to Equation (7). 

From the representation, it is evident that in the time-
frequency spectrum in addition to the two basic frequencies of 5 
Hz and 20 Hz, a cross component occurs also at the frequency of 
12.5 Hz. Components are found in the spectrum, above that other 
interfering frequency, resulting from the finite length of the signal 
(sharp start and stop of the signal), or other discontinuities. From 
the middle graph of Figure 1, an extremely accurate localization 
of the two fundamental frequencies is particularly visible. 

Figure 2 shows calculation results of the smoothed Wigner-
Ville transformation from the signal according to Equation 
(10). As seen from the presented view, the influence of the 
cross component is suppressed by selecting an appropriate small 
parameter α in the function. 

On the other hand, the middle graph in Figure 2 clearly shows 
that the localization of the two basic frequency components, 
in the frequency domain, is obviously worse. This is due to the 
higher blur on the frequency axis.

 

3.	 Case study

The measurements were made on a  test sample of a  rail 
fastening. This sample was composed of UIC60 structural rail 
with elastic fastening Vossloh Skl14, mounted on a B91P concrete 
sleeper. For the experimental investigation of the dynamic 
properties of the test sample, a method based on the measurement 
of a mechanical shock response was used. The mechanical shock 
was excited by a special hammer, which had a force transducer, in 
the radial direction to the rail head. The response was measured 
by acceleration sensors on the foot of the rail and the sleeper seat, 
as shown in Figure 3. 

Figure 1 The classical Wigner-Ville transformation of a simulated signal Figure 2 The smoothed Wigner-Ville transformation of a simulated 
signal
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to 2 kHz, and there is a higher number of them in this interval. 
The same conclusion is provided in the middle graph of Figure 
5, which presents the time-frequency representation of the 
Wigner-Ville coefficients. The longest component is 200 Hz with 
a duration of up to 34 ms. The highest values are on frequencies 
600 Hz and 700 Hz with a  duration of about 15 ms. A  very 
interesting waveform has a  frequency of 1.9 kHz, which occurs 
in the time interval of 2 ms to 24 ms. It is the same with the 
frequency of 400 Hz, which occurs between 5 ms and 35 ms.

4. 	Conclusion

The Wigner-Ville transformation offers a  comprehensive 
tool for analysing the non-stationary signals, in particular. 
Characteristic feature of presented transformation is the fact that 

frequency components). It occurs in the signal almost in its 
entirety, i.e. about 32 ms (at attenuation of up to 40 dB). The 
second most important component is the frequency 3.2 kHz with 
a duration of 30 ms. Others no,le frequencies of 1.7 kHz and 3.3 
kHz are in the signal for the time of 2 ms up to 15 ms.	

The signal taken by the second sensor, located on the concrete 
sleeper seat, has a  different character. From the time recording 
(see the upper graph of Figure 5), it is clear that the maximum 
acceleration amplitude is lower than the signal from the sensor on 
the foot of the rail (Figure 4), due to the waving process via the 
fastening rail, rail pad and sleeper to the accelerometer sensor. 

The course of the amplitude spectrum (left graph of Figure 
5) differs significantly from the characteristics measured by 
the sensor located on the foot of the rail. The most significant 
components occur at the lower frequencies than those captured 
by the sensor at the foot of the rail, i.e. in the range of 200 Hz 

Figure 4 Sensor located on the rail foot, time-frequency analysis by the Wigner-Ville transformation method

Figure 5 Sensor located on concrete sleeper, time-frequency analysis by the Wigner-Ville transformation method
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From this point of view, the Wigner-Ville transformation is 
highly applicable in the area of railway construction upon noise, 
vibration and strain analyses. It is possible to apply this method 
successfully not only on samples of several constructions of 
railway and tramway superstructure, but directly in the field on 
real tracks, as well.
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its resulting distinguishing in time and frequency is not limited by 
the Heisenberg uncertainty principle. This fact includes the high 
distinguishing ability in the time-frequency plane that gives rise 
to a  “precise” localisation of important frequency components 
in time. This method gives a  fast and accurate localisation of 
frequency components included in the measured signal. 

The existence of the “false” interference frequency components 
may be a certain disadvantage of the Wigner-Ville transformation. 
However, their influence can be effectively defused by using 
the so-called smoothed version, when the properties of a  given 
transformation are affected by the use of suitable local window 
function. The result is a compromise solution where one obtains 
the reasonable time and frequency resolution when interferences 
are suppressed.
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