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VIBRATION ANALYSIS BY THE WIGNER-VILLE

TRANSFORMATION METHOD

This paper deals with description and application of the Wigner-Ville transformation for vibration analysis. This transformation belongs to
the group of non-linear time-frequency processes. Thanks to its properties, it may be successfully used in the area of non-stationary and tran-

sitional signals describing various natural processes. The use in the field of the railway constructions testing represents a quite an interesting

application area of the transformation. This paper contains mathematical analysis of the transformation, a case study and practical experience

obtained and recommendations for its practical use.
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1. Introduction

The information on any engineering, physical, or other
phenomenon, is represented in the signal by changes over time of
the current value of the quantity described by the signal. A large
number of methods can be applied to the measured signal in the
time domain.

In many applications, direct evaluation of the time-amplitude
representation is neither easy nor advantageous. For this reason,
the signal can be transformed from the time-domain into another
one. In some cases, important information can be obtained
from the frequency domain. Fourier transform-based methods
are the most frequently used ones. Thus, Fourier transform,
its modifications and some of the parametric methods are the
well suited techniques for processing stationary (at best ergodic
or periodic) signals. They can even be used to analyse the non-
stationary signals if it is important to know only the frequency
components contained in the entire signal. This, of course, gives
no information on the time at which they occur. To localise
such frequency components in time, some other transforming
methods and other computational techniques have to be used. If
the information sources from the time and frequency domains are
combined one can use so called time-frequency transformations
[1], [2]. This enables determination of the frequency as a function
of time. The time-frequency transformations can be divided in two
basic groups [3], [4]:

* Linear (including mainly short Time Fourier Transformation,
Wavelet Transformation, etc.)

*  Non-linear (including mainly Wigner-Ville transformation,
quadratic Cohen transformations, affine and hyperbolic
transformations, eventually some further special proceedings).
Advantages of the linear transformations are mainly the speed

of calculation and satisfactory time-frequency distribution. The

main disadvantage of the linear transformation is the fact that
resulting differentiation in time and frequency is limited by the
so-called Heisenberg principle of uncertainty. Hence, the
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component of the signal cannot be presented as a point in time-
frequency space. It is therefore possible to state only its position
inside the rectangle A¢- Afin a given time-frequency area [5].

A characteristic feature of non-linear transformations is the
fact that their resulting differentiation in time and frequency is
not limited by the Heisenberg principle of uncertainty. This fact
includes the high distinguishing ability in the time-frequency level
that gives rise to “precise” localisation of important frequency
components in time.

2. The Wigner-Villa’s transformation

The Wigner 's distribution was proposed in 1932 by Professor
Wigner in the field of quantum physics and about 15 years later, it
was adapted for the area of signal analysis by the French scientist
Ville. The Wigner-Ville transformation is defined for the time-
frequency domain by relation [6], [7]

WVT(Lf) = [“x(r+5 ) x (t=F)- e dr (1)
where ‘*’ represents a complex conjunction, tis time, Tis shift along
the time axis, xis time representation of the signal x(t) and WVT (t.f)
is a time-frequency representation of the input signal. Equation (1)
shows that it is essentially the Fourier transformation of relation
x(t+1/2)x*(t- 1/2), so the functions x(t/2) and the complex
conjugate of x'(-r/2) at some point in time ¢z. From Equation
(1) it is also apparent that the Wigner-Ville transformation is
a complex function in the time-frequency space. Similarly, one
gets the equation for the calculation in the frequency domain.
If the discrete data sequence is processed, it is necessary to
modify the integral equation mentioned above (1) in the form of
summation.

Unlike the other linear methods (for example the short time
Fourier transformation), in which the resolution is limited by
a window function, the Wigner-Ville spectrum provides a good
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resolution both in the frequency and in time domain. The
important feature here is that the calculation is not limited by
Heisenberg uncertainty principle. The Wigner-Ville distribution
satisfies the time-frequency marginal according to Equation (2)

[6], [8].
[ WVT(t@)dew =| x(t)|
and fWVT(t,a;)da) =|X(w)| )

where WVT(t,w) is the Wigner-Ville transformation, x(t) is
time signal, X(w) is Fourier transformation of a time signal
x(t), t is time and w is angular frequency. Other properties of
the Wigner-Ville distribution are - time shift invariant, frequency
modulation invariant, synchronous invariant time shift and
frequency modulation, time scaling.

Although the calculation of the coefficients of the Wigner-
Ville transformation is not limited by the Heisenberg’s
uncertainty principle, certain problems may arise in calculating
multicomponent signal, which is generated by the sum of two or
more signals. The signal, which arises from additive combination
(sum) of signals x, and x,, is now considered according to
equation

x(t)=x(t)+x:(t) (3)

For the Wigner Ville transformation subsequently applies the
following relation

WVT(t,@) =W, (t,@)+ W (t.w)+ W, (t,w)+
+Wo (tw)=W, (t,o)+ W (t,@)+ 4
+2- Re{le(t,Q))}

where the symbol “Re” stands for the real part and with keeping
equality W , = W, one obtains:

Wo(to)= [Tx(t+Z)xi(t=F) e dr - (s)

It is obvious that the Wigner-Ville transformation of the
sum of the signals is not equal to the sum of the Wigner-
Ville transformation of signals. There is an additional term
2:-Re{W12(t,w)}. This addition may be called interference or
contribution to the cross-component. Based on the fact that the
autocorrelation function is a bilinear operation on the processed
signal and when it is formed, there are “false” contributions from
the aforementioned cross-component in the final calculation
of the time-frequency spectrum display, which then deteriorate
the reproducibility of the view. For a better explanation of the
problem defined above, consider now the signal composed of the
two sine waves of frequencies f, = 5 Hz and f, = 20 Hz according
to the equation

X(t)=A e’ + A e (6)

The Wigner-Ville transformation of such a signal can be
analytically expressed as
— . . 2 2 . . J—
WVT(t@)=2-7-3" A6 (0—w)+

7
+4 A A8 (w—w,) cos(wq-t) @

where the symbol O represents delta function, o, and w, are the
geometric center, or the distance between the two sinusoidal
functions in the frequency plane, respectively, given by:

W, = 0)1‘50)2

Wyg= W:r— W, (8)

Equation (7) fully corresponds to Equation (4) and it
means that in the time-frequency plane the contributions of the
examined signal are concentrated at the frequency w,, w,and also
to nonzero frequency o,

With the number of individual frequency components N,

contained in the analyzed signal, one gets the total number of

(N-1)

contributions from interference N - 5 To eliminate this
effect certain adjustments of the Wigner-Ville transformation can
be used for certain types of signals.

In principle, there are two reasons to modify the basic
properties of the Wigner-Ville transformation. The first reason is
that in practice it is not possible to integrate from - to +o°, but the
calculation can be carried out only for limited signals. The second
reason is to try to eliminate the effect of the cross-components,
which often oscillate heavily. Restrictions of both problems can be
achieved by calculating the modified Wigner-Ville transformation
(often called pseudo or smoothed) by equation [7], [9]

PWVTx (t,f) = [:h(r) x(t+L)

2

* T (—j-2-m 1) (9)
K (= Z) ¢ ar
where the function h(t) is a window function with maximum at
7 = 0. Such a solution quite effectively suppresses interference
(smoothed), but deteriorates the resolution. The smoothed
Wigner-Ville transformation is therefore a certain compromise
between smoothing and resolution. For the better explanation,
consider a signal composed of the two sine waves according to
the Equation (3). Suppose that, parameter o is set by expansion of
function h(t). The smoothed Wigner-Ville transformation of such
a signal can be analytically expressed by the following relation:

1
PWVT,(t,0) = ————-
( ) V2-TT-Q
(0-wi) (w-w>)
‘[A?e 7 +Aj-e e ]+ (10)

(0—(0-2))

+w-cos[(a}z—wl)-t]-e’ va

V2T

For the practical presentation of these conclusions,
a simulated signal, composed of the two sine waves of frequencies
f, =5 Hz and f, = 20 Hz and amplitude 0.5 V, based on equation
(3), was used. It should be noted that the signal is technically
stationary. Significant frequency components in the signal occur
throughout the implementation.

At this signal the classical Wigner-Ville transformation was
first applied, later the smoothed version ones. For the analysis,
pictures (Figure 1 and Figure 2) were used, which consist of a trio
of graphs. The top graph shows the time course of amplitude of
changes in a physical quantity (in this case the voltage). The lower
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Figure 1 The classical Wigner-Ville transformation of a simulated signal

left graph shows the amplitude spectrum calculated by direct
application of the Fourier transformation of the signal.

In the middle graph there is a 3D representation of the time-
frequency course of amplitude spectrum computed by application
of the Wigner-Ville transformation. The spectral data are shown
in different colours. Note that the maximum value is marked as
black. Figure 1 shows calculation results of classical the Wigner-
Ville transformation signal according to Equation (7).

From the representation, it is evident that in the time-
frequency spectrum in addition to the two basic frequencies of 5
Hz and 20 Hz, a cross component occurs also at the frequency of
12.5 Hz. Components are found in the spectrum, above that other
interfering frequency, resulting from the finite length of the signal
(sharp start and stop of the signal), or other discontinuities. From
the middle graph of Figure 1, an extremely accurate localization
of the two fundamental frequencies is particularly visible.

Figure 2 shows calculation results of the smoothed Wigner-
Ville transformation from the signal according to Equation
(10). As seen from the presented view, the influence of the
cross component is suppressed by selecting an appropriate small
parameter o in the function.

On the other hand, the middle graph in Figure 2 clearly shows
that the localization of the two basic frequency components,
in the frequency domain, is obviously worse. This is due to the
higher blur on the frequency axis.

3. Case study

The measurements were made on a test sample of a rail
fastening. This sample was composed of UIC60 structural rail
with elastic fastening Vossloh Skl114, mounted on a B91P concrete
sleeper. For the experimental investigation of the dynamic
properties of the test sample, a method based on the measurement
of a mechanical shock response was used. The mechanical shock
was excited by a special hammer, which had a force transducer, in
the radial direction to the rail head. The response was measured
by acceleration sensors on the foot of the rail and the sleeper seat,
as shown in Figure 3.
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Figure 2 The smoothed Wigner-Ville transformation of a simulated
signal

Figure 3 View of the rail fastening sample

Frequency response functions were calculated from the
response signals due to normalization to the excitation signal.
Those were recalculated by the inverse Fourier Transform into
the time domain. In this way, the normalized time course of
oscillation acceleration was obtained. This method, including
instrumentation, is described in detail in the literature [8], [10].
Analysis in time, frequency and time-frequency domain was used
to evaluate the measured data. The Fourier transform was used
for the analysis in the frequency domain. A procedure, based
on application of the Wigner-Ville transformation, was used for
analysis in the time-frequency domain.

Time histories of the impulse response function, recorded by
accelerometers, located on the rail foot, are depicted in the upper
graph of Figure 4. The left graph of Figure 4 shows the amplitude
spectrum calculated by applying the Fourier transform. There are
six distinct frequencies (200 Hz, 600 Hz, 1.7 kHz, 1.9 kHz, 3.2
kHz and 3.3 kHz).

The time-frequency amplitude spectrum, estimated by
application of the Wigner-Ville transformation from the impulse
response function, is depicted in the middle graph in Figure 4.
As shown in this graph, the time history of important frequency
components essentially differs. As can be seen from this graph,
the time occurrence of significant frequency components varies
considerably. The 1.9 kHz frequency component acquires the
highest values for a relatively long time (relative to other

COMMUNICATIONS 4/2018

VOLUME 20



VIBRATION ANALYSIS BY THE WIGNER-VILLE TRANSFORMATION METHOD 27

Impulse Response Function
T T T

Smoothed Wigner-Ville transformation
T T

40 50 60 70 80

Frequency Response Funetion

T T 0

-20

)
Tl @
%
1 -40
-60
L L 1 L 1
0 =20 40 -60 0 10 20 30 40 S0 60 70 80
t[ms]
Figure 4 Sensor located on the rail foot, time-frequency analysis by the Wigner-Ville transformation method
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Figure 5 Sensor located on concrete sleeper, time-frequency analysis by the Wigner-Ville transformation method

frequency components). It occurs in the signal almost in its
entirety, i.e. about 32 ms (at attenuation of up to 40 dB). The
second most important component is the frequency 3.2 kHz with
a duration of 30 ms. Others no,le frequencies of 1.7 kHz and 3.3
kHz are in the signal for the time of 2 ms up to 15 ms.

The signal taken by the second sensor, located on the concrete
sleeper seat, has a different character. From the time recording
(see the upper graph of Figure 5), it is clear that the maximum
acceleration amplitude is lower than the signal from the sensor on
the foot of the rail (Figure 4), due to the waving process via the
fastening rail, rail pad and sleeper to the accelerometer sensor.

The course of the amplitude spectrum (left graph of Figure
5) differs significantly from the characteristics measured by
the sensor located on the foot of the rail. The most significant
components occur at the lower frequencies than those captured
by the sensor at the foot of the rail, i.e. in the range of 200 Hz

to 2 kHz, and there is a higher number of them in this interval.
The same conclusion is provided in the middle graph of Figure
5, which presents the time-frequency representation of the
Wigner-Ville coefficients. The longest component is 200 Hz with
a duration of up to 34 ms. The highest values are on frequencies
600 Hz and 700 Hz with a duration of about 15 ms. A very
interesting waveform has a frequency of 1.9 kHz, which occurs
in the time interval of 2 ms to 24 ms. It is the same with the
frequency of 400 Hz, which occurs between 5 ms and 35 ms.

4. Conclusion

The Wigner-Ville transformation offers a comprehensive

tool for analysing the non-stationary signals, in particular.
Characteristic feature of presented transformation is the fact that
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its resulting distinguishing in time and frequency is not limited by
the Heisenberg uncertainty principle. This fact includes the high
distinguishing ability in the time-frequency plane that gives rise
to a “precise” localisation of important frequency components
in time. This method gives a fast and accurate localisation of
frequency components included in the measured signal.

The existence of the “false” interference frequency components
may be a certain disadvantage of the Wigner-Ville transformation.
However, their influence can be effectively defused by using
the so-called smoothed version, when the properties of a given
transformation are affected by the use of suitable local window
function. The result is a compromise solution where one obtains
the reasonable time and frequency resolution when interferences
are suppressed.

References

[1]
374, 1968. https://doi.org/10.1109/TIT.1968.1054157
[2]
Letters of the University of Zilina, 16(4), 123-127, 2014.
[3]

From this point of view, the Wigner-Ville transformation is
highly applicable in the area of railway construction upon noise,
vibration and strain analyses. It is possible to apply this method
successfully not only on samples of several constructions of
railway and tramway superstructure, but directly in the field on
real tracks, as well.

Acknowledgments
This research has been supported by the research project

FAST-S-18-5216, The dynamic response analysis of the railway line
to the load using selected nonlinear time-frequency procedures.

RIHACZEK, A. W.: Signal Energy Distribution in Time and Frequency. IEEE Transaction on Information Theory, 14(5), 369 -

SMUTNY, J., SADLEKOVA, D.: The Vibration Analysis by Margenau-Hill Transformation Method. Communications - Scientific

HAMMOND, J. K., WHITE, P. R.: The Analysis of Non-Stationary Signals Using Time-Frequency Methods. Journal of Sound

and Vibration, 190(3), 419-447, 1996. https://doi.org/10.1006/jsvi.1996.0072

[4]

[5]

[6]

[7]

[8]

[91]

[10]

ZHENG, G. T., MCFADDEN, P. D.: A Time-frequency Distribution for Analysis of Signals with Transient Components and Its
Application to Vibration Analysis. Journal of Vibration and Acoustic, 121(3), 328-333, 1999.

SMUTNY, J., VUKUSICOVA, D., NOHAL, V., SEELMANN, H.: Vibration Analysis by Gabor Transformation Method.
Communications - Scientific Letters of the University of Zilina, 19(4), 24-29, 2017.

MARTIN, W., FLANDRIN, P.: Wigner-Ville Spectral Analysis of Non-stationary Processes. IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-33(6), 1461-1470, 1985.

KAKOFENGITIS, D., STEUERNAGEL, O.: Wigner’s Quantum Phase Space Current in Weakly Anharmonic Weakly Excited
Two-State Systems. European Physical Journal Plus 132(381), 2017. https://doi.org/10.1140/epjp/i2017-11634-2

SMUTNY, J.: Measurement and Analysis of Dynamic and Acoustic Parameters of Rail Fastening. NDT & E International -
Independent Nondestructive Testing and Evaluation, 37(2), 119-129, 2004. https://doi.org/10.1016/j.ndteint.2003.08.003
SHARMA, R. R. PACHORI, R. B.: Improved Eigenvalue Decomposition-Based Approach for Reducing Cross-Terms in
Wigner-Ville Distribution. Circuits, Systems, and Signal Processing, Elsevier, 37(8), 3330-3350, 2018. https://doi.org/10.1007/
$00034-018-0868-7

MORAVCIK, M.: Analysis of Vehicle Bogie Effects on Track Structure-Nonstationary Analysis of Dynamic Response.
Communications - Scientific Letters of the University of Zilina, 13(3), 33-40, 2011.

COMMUNICATIONS

4/2018 VOLUME 20





