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1. 	 Introduction

Problem of modelling and description of propeller shafts is 
quite old [1]. Propeller shafts of drive vehicles are evolutionary 
systems. Evolutionary system means the parameters of the shaft 
are changing in time. The shafts are long and slender. For this 
reason, they are affected by torsional stress and also by lateral and 
transversal vibrations [2]. 

Due to the continuous operations, the shafts have to operate 
in subcritical speed. Results of previous works, which were 
also compared to experiments, showed that the propeller shafts 
represent strong evolutionary systems (increasing the angular 
velocity of rotation significantly reduces the spectrum of natural 
frequency relative lateral vibrations) and in practical calculations 
it is necessary to respect this influence. For that reason, it is not 
possible to model the shafts using procedures that are commonly 
reported in the literature, but it is necessary to formulate a model 
that allows for this effect to be respected. Due to results of 
previous works and experiments, it is not possible to model 
the shafts using procedures that are commonly reported in 
the literature [3], [4], but it is necessary to formulate a  model 
that allows respecting that with increasing the angular velocity 
of rotation the spectrum of natural frequency relative lateral 
vibrations is significantly reduced.

Propeller shafts are in a  steady state stressed by excitation 
bending moment’s harmonics and their vectors are perpendicular 
to the rotating plane of a  relevant fork Hooks joints. The 
drive torque mentioned in a  steady state is generated due to 
the transmission flow through Hooks joints and causes lateral 
oscillations of the propeller shaft in its rotating space. In 
formulating a mathematical model, it is necessary to start from 
the assumption of existence of the relative spatial bending 
vibration in the shaft system 0(x,y,z), which rotates at an angular 
speed  . If one neglects the Coriolis force and gyroscopic moments 
acting on the element of the shaft, one can solve the problem in 

the rotating plane 0(x,y). The instantaneous state of the element 
is determined by the velocity and the angular velocities. This 
article aims to build a mathematical model of a coupling shaft to 
calculate spectral and modal properties of the connecting shaft 
with respect to the field of centrifugal forces that is causing the 
addition of natural frequencies of bending vibrations relative to 
the angular velocity of the shafts rotation. 

2. 	Formulation of the problem

Propeller shafts are in a  steady state stressed by excitation 
bending moments harmonic, and their vectors are perpendicular 
to the rotating plane of a relevant fork Hook´s joints (Figure 1).

A  model was built on an assumption of existence of the 
relative spatial bending vibration in the shaft system , (Figure 2), 
which rotates at an angular speed x{o . The dimensionality of the 
problem can be reduced from 3D to 2D by neglecting the Coriolis 
force and gyroscopic moments acting on the element of the shaft. 
Then, one can solve the problem in the rotating plane . The 
instantaneous state of the element is determined by the angular 
velocity x{o , the velocity vxo  and the angular velocity zs{o . 
A mathematical model of a coupling shaft was built in order to 
calculate the spectral and modal properties of the connecting 
shaft, including the natural frequency of bending oscillations.

3. 	Physical discretization

The drive shaft, shown in Figure 1 (consider solid bearings), 
is replaced by a discrete mechanical system with only one degree 
of freedom. This system is divided into two equal halves, which 

represent an intangible spring (Figure 3) having the rigidity k2 .
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where m
k ~X = -  is the natural frequency of relative 

undamped oscillations. By modification of this equation one 

obtains:

m
k2 2~X + = 	 (4)

 
which is equation of the circle with origin at ,O ~ X^ h and radius 

m
k .

4. 	The test model

The test model parameters are chosen of the prototype 
car – Skoda 781. This choice comes from the cooperation 
with the industry. Parameter of this test model are: 
r = 0.0105m, l = 0.65m, E = 2.1 . 1011Pa and ρ = 7.8 . 103kg . m-3. 
Using these parameters the following was obtained: J = 9 . 10-4m4, 
S  = 3.46 . 10-4m2, k  = 3.3 . 105Nm-1, m = 0.88kg and  
Ω(0) = 591.9483rad . s-1 (see Figure 5).

It is also possible to obtain an analytical solution by solving 
the following equation derived in [5], which is describing the 
model in Figure 6:
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The mass is concentrated to the endpoints of the springs. This 

means that the two fixed points belongs to the support and two 

others fixed points will merge into one in the middle of the shaft. 

This middle point has the mass of m
lS
2
p

= , where S is the cross-

section area, l is length of the shaft and ρ is density. This model 

can be simply transformed to model of the spring (Figure 4).

In this case, one can determine the stiffness of this spring as 

k
l
EJ48
3= , where Ε is a  modulus of elasticity in tension, J is 

defined as J r4
4r=  and l is length of the shaft. Assuming the 

constant angular velocity ω it is necessary to introduce the 

moment M . Now one can write equations for kinetic and 

potential energy of the spring, respectively, as:

 
E my m y E ky2

1
2
1

2
1

k x p
2 2 2{= + =o o^ h 	 (1)

 
In addition, equations of motion are written by formulas:

,my k m y M myy0 2 02~ ~+ - = - =p o^ h 	 (2)
 

Equation of relative oscillating movement in rotating plane 
can be rewritten in the form: 

y y 02X+ =p 	 (3)

Figure 1 Model of propeller shafts

Figure 2 Coordinate system of the shaft

Figure 3 Replacing of the drive shaft by divided system  
of one degree of freedom

Figure 4 Modelling of the shaft by the spring
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6. 	The Transfer-matrix method

For calculation using the transfer-matrix method, the model 
of the shaft is treated as one dimensional continuum [11] of 
constant circular cross section. It is defined by:
•	 Geometrical parameters l[m] - the length of the one 

dimensional continuum r[m] - radius of cross section of the 
shaft.

•	 Material constants ρ[mkg -3] - the material density E[Pa] - the 
modulus of elasticity in tension or compression.

•	 Operating parameter ω[rads -1] - the angular velocity of 
rotation of the plane O(x,y) around the axis x.
The solution is sought in the form of 

,y x t Y x ei t= X^ ^h h 	 (6)

The solution of Equation (6) can be arranged to the vector 
of state –V(x) . This vector is bound by the initial vector state to 
a coordinate of x = 0 by the relationship:

 
V(x) = H(x)V(0)	 (7)

and boundary vectors V(0), V(l) of the shaft’s condition are 
bound by the transfer matrix of the continuum section H(l). This 
means:

 

Solution of Equation (5) provides the relation between Ω and  

ω in form  
R R

12

2

2

2~X
+ = . For the test model, the final analytic 

solution is:  R r E
l2

2

t
r

= a k .

If one calculates R with given testing parameters, the value  

R = 636.1432rad . s-1 is obtained and, by parametrizing with ω, the 

graph in Figure 7.

5. 	The Finite element method

An element of the shaft in the shape of prismatic section with 
the circular cross-section is considered (Figure 8).

In this case, the deflection  can be described as 
,y x t q t xi i

i 1

4
U=

=
^ ^ ^h h h/ , where xiU ^ h are the 3rd order 

polynomials. For more details see [6]. One can take this model 
and join it multiple times together to create graduated shaft 
(Figure 9). The graduated shaft means that the shaft is divided 
into several parts, which are mathematically described separately. 
These descriptions of part are linked in the model through the 
boundary conditions of the parts.

Using the finite element method [7], the whole shaft is then 
described by a  matrix and each part as a  sub-matrix. For more 
details see [6], [8], [9], [10].

Figure 5 The natural frequency dependence of discrete model’s relative 
transverse vibrations (shown in Figure 4) on the angular velocity of 

rotation

Figure 6 Test model for calculation of propeller shaft’s speed resonance

Figure 7 The graph of functional dependence of the angular frequency 
(Ω) lateral vibrations in terms of the angular speed of rotation (ω) of 

the propeller shaft’s test model

Figure 8 The element of the propeller shaft in the state of combined 
bending-gyratory vibrations
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7.	 Conclusion

The mathematical model, based on the physical discretization 
was defined and used for solving the problem of finding the 
critical speed of rotations. This model was programmed as 
a  script in the GNU Octave. In addition, there is a  possibility 
of using the analytical solution derived from Equation (6). 
Both of these solutions give the circular dependency of Ω and 
ω (Equation (5) and Equation (7)). The use of Finite element 
method for modelling the propeller shaft and for calculation of 
critical speed was attempted. However, this needs a little bit more 
of programming and calculation. The use Transfer-Matrix method 
was tried, as well. Using this method should enable modeling of 
a shaft composed of different parts with different properties. The 
initial goal is to prepare the scripts for testing. After that, the 
program should be written, which will be more user friendly than 
the scripts.
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 V(l) = H(l)V(0)	 (8)
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These are boundary vectors for the intended type of the 
deposit - zero deflection, zero bending moments at the edges. 

,Y Y l0l l^ ^h h are the amplitudes of the deflection slope line, 
, lQ Q0^ ^h h are the amplitudes of the shear forces at the edges 

of the shaft. From Equation 7, Equation 8 and Equation 9 
following statements can be derived:
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The frequency equation can be obtained from the condition 

of the non-trivial solution.
 

H H H H 012 34 14 32- = 	 (11)

Based on properties of the shaft and initial condition, the 
explicit form of the transfer matrices , , ,H H H H12 34 14 32  can be 
found. For more details see [12].

Figure 9 Dynamic model of graduated shaft
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