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ORIGINAL RESEARCH ARTICLE

Petr Hruby - Tomas Nahlik - Dana Smetanova*

MATHEMATICAL MODELLING OF SHAFTS IN DRIVES

Propeller shafts of the vehicle's drive transmit a torque to relatively large distances. The shafts are basically long and slender and must
be dimensioned not only in terms of torsional stress, but it is also necessary to monitor their resistance to lateral vibration.

In the paper, a simple model (of the solved problem) is constructed by the method of physical discretization, which is evident from the
nature of the centrifugal force fields' influence on the spectral properties of the shaft. An analytical solving of speed resonances prop shafts
test model (whose aim is to obtain values for verification subsequently processed models based on the transfer-matrix method and the finite

element method) is performed.
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1. Introduction

Problem of modelling and description of propeller shafts is
quite old [1]. Propeller shafts of drive vehicles are evolutionary
systems. Evolutionary system means the parameters of the shaft
are changing in time. The shafts are long and slender. For this
reason, they are affected by torsional stress and also by lateral and
transversal vibrations [2].

Due to the continuous operations, the shafts have to operate
in subcritical speed. Results of previous works, which were
also compared to experiments, showed that the propeller shafts
represent strong evolutionary systems (increasing the angular
velocity of rotation significantly reduces the spectrum of natural
frequency relative lateral vibrations) and in practical calculations
it is necessary to respect this influence. For that reason, it is not
possible to model the shafts using procedures that are commonly
reported in the literature, but it is necessary to formulate a model
that allows for this effect to be respected. Due to results of
previous works and experiments, it is not possible to model
the shafts using procedures that are commonly reported in
the literature [3], [4], but it is necessary to formulate a model
that allows respecting that with increasing the angular velocity
of rotation the spectrum of natural frequency relative lateral
vibrations is significantly reduced.

Propeller shafts are in a steady state stressed by excitation
bending moment’s harmonics and their vectors are perpendicular
to the rotating plane of a relevant fork Hooks joints. The
drive torque mentioned in a steady state is generated due to
the transmission flow through Hooks joints and causes lateral
oscillations of the propeller shaft in its rotating space. In
formulating a mathematical model, it is necessary to start from
the assumption of existence of the relative spatial bending
vibration in the shaft system 0(x,y,z), which rotates at an angular
speed . If one neglects the Coriolis force and gyroscopic moments
acting on the element of the shaft, one can solve the problem in
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the rotating plane 0(x,y). The instantaneous state of the element
is determined by the velocity and the angular velocities. This
article aims to build a mathematical model of a coupling shaft to
calculate spectral and modal properties of the connecting shaft
with respect to the field of centrifugal forces that is causing the
addition of natural frequencies of bending vibrations relative to
the angular velocity of the shafts rotation.

2. Formulation of the problem

Propeller shafts are in a steady state stressed by excitation
bending moments harmonic, and their vectors are perpendicular
to the rotating plane of a relevant fork Hook “s joints (Figure 1).

A model was built on an assumption of existence of the
relative spatial bending vibration in the shaft system , (Figure 2),
which rotates at an angular speed a The dimensionality of the
problem can be reduced from 3D to 2D by neglecting the Coriolis
force and gyroscopic moments acting on the element of the shaft.
Then, one can solve the problem in the rotating plane . The
instantaneous state of the element is determined by the angular
velocity at the velocity vi and the angular velocity a)
A mathematical model of a coupling shaft was built in order to
calculate the spectral and modal properties of the connecting
shaft, including the natural frequency of bending oscillations.

3. Physical discretization
The drive shaft, shown in Figure 1 (consider solid bearings),
is replaced by a discrete mechanical system with only one degree

of freedom. This system is divided into two equal halves, which

represent an intangible spring (Figure 3) having the rigidity %
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MATHEMATICAL MODELLING OF SHAFTS IN DRIVES

Figure 2 Coordinate system of the shaft

The mass is concentrated to the endpoints of the springs. This
means that the two fixed points belongs to the support and two
others fixed points will merge into one in the middle of the shaft.
This middle point has the mass of m = % where S is the cross-
section area, / is length of the shaft and p is density. This model
can be simply transformed to model of the spring (Figure 4).

In this case, one can determine the stiffness of this spring as

48

k= lsEJ, where E is a modulus of elasticity in tension, J is

defined as J = %r“ and / is length of the shaft. Assuming the

constant angular velocity « it is necessary to introduce the
moment M . Now one can write equations for kinetic and

potential energy of the spring, respectively, as:

E, = jmy2 + jm(yqox)2

E,=+ky (1
In addition, equations of motion are written by formulas:

my + (k—ma?)y =0, M—2myyw = 0 ()

Equation of relative oscillating movement in rotating plane
can be rewritten in the form:

y+2y=0 3)
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Figure 3 Replacing of the drive shaft by divided system
of one degree of freedom
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Figure 4 Modelling of the shaft by the spring
_ |k . .
where Q = 77 — @ is the natural frequency of relative

undamped oscillations. By modification of this equation one
obtains:

Qz+a)2=% (4)

which is equation of the circle with origin at O(@, ) and radius
k

m:

4. The test model

The test model parameters are chosen of the prototype
car - Skoda 781. This choice comes from the cooperation
with the industry. Parameter of this test model are:
r=0.0105m, [ =0.65m, E=2.1-10"Pa and p = 7.8 - 10%kg - m*.
Using these parameters the following was obtained: J =9 - 10“m?,
S = 346 - 10*m* k = 3.3 - 10°Nm', m = 0.88kg and
0(0) =591.9483rad - s* (see Figure 5).

It is also possible to obtain an analytical solution by solving
the following equation derived in [5], which is describing the
model in Figure 6:

d'y _pSr’ d'y  pSrw’ 3’y  pS
ox'  4EJ 9x’or’ 4E]  ox*  EJ
2 S0 (5)
¥y pswt o
o EJ Y
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Figure 5 The natural frequency dependence of discrete model’s relative
transverse vibrations (shown in Figure 4) on the angular velocity of
rotation
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Figure 6 Test model for calculation of propeller shaft’s speed resonance

Solution of Equation (5) provides the relation between £ and

2 o’
w in form e + R 1. For the test model, the final analytic
oniss R=1 JE(ZY
solution is: R = 7 P( ] ) .

If one calculates R with given testing parameters, the value
R =636.1432rad - s is obtained and, by parametrizing with , the
graph in Figure 7.

5. The Finite element method

An element of the shaft in the shape of prismatic section with
the circular cross-section is considered (Figure 8).

In this case, the deflection can be described as
y(x,0)=2" qi(1)®:(x), where ®:(x) are the 3rd order
polynomials. For more details see [6]. One can take this model
and join it multiple times together to create graduated shaft
(Figure 9). The graduated shaft means that the shaft is divided
into several parts, which are mathematically described separately.
These descriptions of part are linked in the model through the
boundary conditions of the parts.

Using the finite element method [7], the whole shaft is then
described by a matrix and each part as a sub-matrix. For more
details see [6], [8], [9], [10].
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Figure 7 The graph of functional dependence of the angular frequency
(Q) lateral vibrations in terms of the angular speed of rotation (v) of
the propeller shaft’s test model
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Figure 8 The element of the propeller shaft in the state of combined
bending-gyratory vibrations

6. The Transfer-matrix method

For calculation using the transfer-matrix method, the model
of the shaft is treated as one dimensional continuum [11] of
constant circular cross section. It is defined by:

* Geometrical parameters /[m] - the length of the one
dimensional continuum r[m] - radius of cross section of the
shaft.

« Material constants p[mkg] - the material density E[Pa] - the
modulus of elasticity in tension or compression.

e Operating parameter w[rads'] - the angular velocity of
rotation of the plane O(x,y) around the axis x.

The solution is sought in the form of

y(x,1) = Y(x)e™ (6)

The solution of Equation (6) can be arranged to the vector
of state -V(x) . This vector is bound by the initial vector state to
a coordinate of x = 0 by the relationship:

V(x) = H(x)V(0) (7
and boundary vectors V(0), V(/) of the shaft’s condition are

bound by the transfer matrix of the continuum section H(/). This
means:
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Figure 9 Dynamic model of graduated shaft

V() =H(/)V(0) (8)
Where
0 0
V()= Y'él) LV(0)= Y’(()O) 9
-0(1) -0(0)

These are boundary vectors for the intended type of the
deposit - zero deflection, zero bending moments at the edges.
Y'(0),Y’(1) are the amplitudes of the deflection slope line,
0(0), (1) are the amplitudes of the shear forces at the edges
of the shaft. From Equation 7, Equation 8 and Equation 9
following statements can be derived:

Ho —H. 0 0][v"(0)
Hx —Hu —1 0| |0(0)|_ (10)
Hy, —Hy 0 0f|Y'(1)

H42 _H44 0 l Q(l)

The frequency equation can be obtained from the condition
of the non-trivial solution.

HyHy— HuH» =0 (11

Based on properties of the shaft and initial condition, the

explicit form of the transfer matrices H,, Hs, Hs, Hs, can be
found. For more details see [12].

References

7. Conclusion

The mathematical model, based on the physical discretization
was defined and used for solving the problem of finding the
critical speed of rotations. This model was programmed as
a script in the GNU Octave. In addition, there is a possibility
of using the analytical solution derived from Equation (6).
Both of these solutions give the circular dependency of 2 and
w (Equation (5) and Equation (7)). The use of Finite element
method for modelling the propeller shaft and for calculation of
critical speed was attempted. However, this needs a little bit more
of programming and calculation. The use Transfer-Matrix method
was tried, as well. Using this method should enable modeling of
a shaft composed of different parts with different properties. The
initial goal is to prepare the scripts for testing. After that, the
program should be written, which will be more user friendly than
the scripts.
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