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The classical solution for critical stresses in the problem of stability of a  circular longitudinally compressed 
cylindrical shell consists of two terms, reflecting the ability of the shell to resist buckling due to bending and membrane 
deformations. However, with usual boundary conditions the classical solution appears only with the absence of the 
Poisson expansion of a  shell. With a  non-zero Poisson's ratio, an axisymmetric edge effect presents. It reduces the 
critical load and causes the initial arrangement of its own forms to change as the load increases.
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Another important point is a significant decrease of the 
critical load with certain boundary conditions (for example, 
under the condition of a free edge and some others).

In general, this is due to the fact that the total 
resistance of the shell to buckling is created from the 
bending energy and the energy of the circumferential 
membrane deformations.

In this paper, the above-mentioned expansion of the 
critical load expression is considered into two terms, the 
solution is being analyzed, as well as results of the study 
of the influence of the edge effect by Almros [6-7]. It is 
shown that the edge effect leads to disappearance of the 
axisymmetric form of loss of stability. Some features of 
development of the edge effect and its role in the wave 
formation at the time of loss of stability were also studied. 
In addition, some variants of boundary conditions of 
the shell were considered that lead to reduction of the 
critical load by half in comparison with the classical one. 
In the paper, the periodic buckling modes of an axially 
compressed cylindrical shell are being examined. Matters 
of localized buckling modes are being considered in other 
works of the authors [4, 8].

2	 On the classical critical load

The bifurcation problem of the stability of an axially 
compressed circular cylindrical shell is known [9] to be 
described by a  linear partial differential equation with 
respect to the deflection W (x, y) for zero boundary 
conditions
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For the case of pinned edge

1 	 Introduction

It is known that the solution of the linear stability 
problem of an axially compressed circular elastic cylindrical 
shell without initial imperfections gives the classical value 
of the critical stresses

/E R 3 1.cr cl
2v d y= -^ h .	 (1)

Buckling of the shell occurs either in an axisymmetric 
form or in a form that is a linear combination of axisymmetric 
n 0=^ h  and skew-symmetric n 1=^ h  eigen forms. Here 

n is the number of total circumferential waves in critical 
equilibrium.

Equation (1) was obtained by Lorenz (1908, non-
axisymmetric buckling [1]) and Timoshenko (1910, 
symmetrical buckling [2]). However, in subsequent years 
it was established that if the shell material has a nonzero 
Poisson’s ratio 0!y^ h , then in many cases of boundary 
conditions the classical critical load is not achieved even 
in calculations. The reason is a development of a non-linear 
axisymmetric edge effect, caused by the constraint with the 
boundary conditions of free Poisson expansion. In the book 
[3] Panovko wrote that the axisymmetric boundary effect 
makes the linear eigen value problem inhomogeneous, and 
to obtain the solution of the stability problem one should 
perform a geometrically nonlinear calculation. This remark 
is true in relation to axisymmetric eigen forms. But with 
respect to non-axisymmetric forms of loss of stability (forms 
of “wave formation”), the eigen value problem remains 
homogeneous. These forms of stability loss of an axially 
compressed cylindrical shell are unstable (watershed), 
since they separate the stable subcritical equilibrium from 
another stable but strongly deformed distant equilibrium, 
meaning the destruction of the shell [4-5].
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Then, according to what has been said, follows:

;

.

v
v

v

12 1
1 12 1

2 3 1

min
cr 2

2 2

2

"v }
W W

W

=
-

+ = -

= -

^
^

^h
h

h; E
	 (12)

Finally, one obtains an expression for the classical 
critical stress
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The number of circumferential waves n depends on the 
ratio of the sides of the rectangular wave formation cells 
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For 1p=  (square cells)  the well-known equation is 

obtained .n R0 909,
d

.

The energy justification of Equation (9) will be shown 

in deriving a  critical force P crv d=^ h , as Timoshenko 

did [10].It used the sinusoidal form of deflections 

sinw A R
mxr=a k  as an axisymmetric form of loss of 

stability.
The condition for achieving the critical equilibrium can 

be represented as the vanishing of the second variation of 
the total potential energy

E I I I 0b m
2d = + + =v ,	 (15)

where Iv  is the work of the external load, 
I

b
 and I

m
 is the potential energy of bending and membrane 

deformations,
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The critical load is obtained in the form of two 
components in accordance with the representation of the 
energy of elastic deformation as the sum of the energy of 
the bending deformation and the energy of the membrane 
deformation.
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where:
V - transverse displacement, 
d  - Laplace operator, 
D - cylindrical rigidity, 
v  - axial compressive stress.

As a  solution (non-axisymmetric form of loss of 
stability), one can take

sin sinW A mx
R
ny

1min
r= ,	 (4)

where n and m are integers that determine the number of 
circumferential waves and axial half-waves. Substitution of 
the expression for the deflection in the form of a product of 
sinusoids makes it possible to express the critical stress in 
the following form:

R
E

l
m

R
n

v m
l R

l
m

R
n

l R

m

12 1
cr

2

2 2

2

2

2 2 2

2

2

2 2

2

2

2
2

2 2

2 2

2

v
r

r

r
r

=
-

+ +

+
+c

^ c

m

h m<

H
	 (5)

If the dimensionless quantities are introduced

/n R2h d= ;   / /b a Rm nlp r= = ,	 (6)

where a  and b are the dimensions of the rectangular 
wave formation cells along the generator and the cylinder 
guide. If one denotes
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then one can write
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Here the first term in parentheses determines the 
energy contribution of the flexural deformations of the 
shell to the total buckling resistance; the second term is the 
contribution of the energy of circumferential membrane 
deformations. The expression in square brackets consists of 
two actually reciprocal quantities. Therefore, the smallest 
value of the critical stress is achieved when these terms are 
equal. Then, each of them is equal to half of the minimum 
critical load

2
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To determine min
crv  it is convenient to introduce the 

notation
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The second summand are zero eigen modes 
W Wc1

0p= {_ i , which are found by numerically solving the 
homogeneous equilibrium and deformation compatibility 
equations, after substituting in them the solutions for the 
edge effect in them W0  and f0

,
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Here, the subscripts xx and yy after the comma 
mean differentiation with respect to the corresponding 
coordinate. Using

;sin sinf F x R
ny
W W x R
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1 1= =^ ^h h .	 (30)

Almros moved to a system of ordinary equations with 
variable coefficients with respect to F(x) and W(x)

,
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Boundary conditions were expressed through W and F 
in the usual way in the case when they include W, f, P, N

xy
. 

The conditions for displacements were written as follows:
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A classical solution is obtained if one assumes that

/W vPR E0 d= .	 (35)

The solution of equations and determination of the 
critical load were carried out numerically by the method of 
finite differences (MFD).

The homogeneous problem of determining the 
bifurcation load corresponding to a non-axisymmetric form 
of loss of stability was solved from the condition that the 
determinant of the corresponding matrix be zero.

Studies of the convergence of MFD showed that to 
obtain two valid signs of the critical load, it is sufficient to 
have 50-100 sampling points. Refinement of the critical load 
(3-4 valid marks) required a substantial grinding of the grid 
(up to 400-600 points) and, correspondingly, an increase in 
the labor intensity of problem solving.

In problems with pinned boundary condition, 
convergence from below was observed, whereas in the 
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In the above derivation of the equation of the classical 
critical stress, it corresponds to the equality of the terms in 
parentheses
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1

cr b m cr cl& = = $ .	 (21)

If one denotes
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Finally, one gets
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The number of axial half-waves m is defined as follows:

/m v R2 3 1 12 r d= -^ h .	 (25)

It should be noted that the decomposition of the critical 
force into a  bending and equal membrane component 
is valid only for the classical solution of the linearized 
stability problem considered above. In the case of the 
development of the edge effect, the ratio between P b  and 
P m  can change. At the same time, under certain boundary 

conditions, it can turn out that P m  is much smaller P b , 
and then the critical force  P cr  will be much lower than 
the classical value.

3	 Influence of the edge effect

Studies of the edge effect on the axially compressed 
cylindrical shells were carried out by Geckeler [11], Fisher 
[12], Ohira [13], Almros [6], Hoff and Reifeld [14]. Especially 
important are the results obtained by Almros. He presented 
the general solution for deflection W and stress function f 
at the moment of loss of stability in the form of two terms

W W W0 1= + ; f f f0 1= + .	 (26)

The first terms are solutions of the differential equation 
of the boundary effect (for details see [6])
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under the boundary condition

.S w w u V 0 0 842 ,h= = = =C C C Cm^ h ,	 (38)

for S w w N N 0x xy3 = = = =C C C Cm^ h   
value h  smaller . .0 5 0 51'.h^ h .	 (39)

case of fixed edges of the shell, the convergence of the 
approximate values of the critical load was from above.

The results of this investigation with respect to 

cr cl

cr
cr eff

h v
v

=
$

$

 with eight different combinations of boundary 

conditions are given in the article`s table [6]. Note that 

Almros used not all combinations of /R d  and /R d .

As follows from results in that table, influence of those 
shell parameters on the critical load is much less than the 
influence of the boundary conditions. Thus, for standard 
hinge support conditions

Figure 1 Competition of eigen modes

Figure 2 Eigen forms, calculated at loads of 520, 550 and 720 kN (v = 0.3)
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the cases except for S
3
 and S

4
, for which the number of 

circumferential waves decreased to two (n
cr
 = 2).

The finite element calculations of the authors 
(NASTRAN, MARC) showed a  critical pressure P

cr
 = 713 

kN for the hinged shell of Croll [15] (R/δ = 300, R = 300 mm, 
L/R = 2.88, E = 2.1∙104 kg/mm2, v = 0.3). For a close-sized 
shell (R/δ = 100, L/R = 3.2) with the same pinned edge 
Almros obtained P ~ 693 kN. The classical critical load for 
this shell is:

. .P E kN1 21 798 28cr cl
2r d= =$ .	 (41)

The Almros’s result is .0 868h= . Here the result is 
slightly larger .0 893h=^ h . The number of circumferential 
waves is n = 15, and not 9 as in Almros, which is explained 
by a much larger value of R/δ = 250> 100. It is noted that the 
development of a nonlinear axisymmetric edge effect due to 
the constraint of the Poisson expansion of the shell’s edge 
leads to a competition of eigen modes as the compressive 
load increases. This means that the curves of changes in the 
corresponding eigenvalues, with respect to the load of the 
derivative of the nonlinear operator, intersect each other. 

Practically the same values . .0 5 0 51',h h^ h  were 
obtained  for the case

S w w N N 0x xy4 = = = =C C C Cm^ h  .	 (40)

It was noted that in the case of S
3
 and S

4
, the reduction 

in the critical load is the same as without taking into 
account the edge effect. These last two results (S

3
 and S

4
) 

indicate an important inhibiting role of circumferential 
membrane stresses. In the absence of these stresses, the 
critical load is almost halved compared to the classical one.

In the case of a  standard fixed edge (the condition 
C w N NW 0x xy3 = = = =C C Cl^ h ), as in the case 
of the condition wC W u V 01 = = = =C C C Cl^ h , 
reduction of the load somewhat less . .0 91 0 93'h= .

A  slightly smaller value h  for the case 
C C NW W v 0x2 2 = = = =C C C Cl^ ^ hh . 
Here . .0 86 0 91'ch . Approximately the 
same values h  are for the combination C

4

C W W N N 0x xy4 = = = =C C C Cl^ ^ hh , . .0 86 0 91'ch .
It was found that the form of a  non-axisymmetric 

loss of stability has 8-9 circumferential waves for all 

Figure 3 The eigen forms of a shell with zero Poisson’s ratio

Figure 4 Distribution of stresses in the circumferential direction in pre critical and post critical equilibrium
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P
cr.p

 = 761.8 kN). It can be seen that the initial order of the 
arrangement of the first 5 eigen forms is preserved up to 
the critical equilibrium. Consequently, among these eigen 
forms there is no competition in the absence of an edge 
effect. In this paper it is established that even a very small 
nonzero Poisson’s ratio (v = 0.05) causes development of 
the edge effect.

It is noted that, due to the edge effect, a  powerful 
belt of large tensile circumferential membrane stresses 
is created in the edge zone of the hinged shell. Such 
a  belt (as a  hoop) substantially increases the stability 
margin of a  longitudinally compressed shell (Figure 
4). Simultaneously with this belt a  belt of significant 
compressive circumferential membrane stresses is formed. 
Here, the shell experiences a biaxial contraction - this is the 
most provocative zone from the point of view of the onset 
of wave formation. Indeed, upon transition to the initial 
post critical equilibrium, it is precisely along the zone of this 
compression belt that the first “wave formation elements” 
develop (Figure 4), which then expands to the entire shell 
surface.

4	 Conclusion

Calculations performed on model shells showed 
that the development of a  nonlinear edge effect leads to 
a change in the order of the eigen forms of loss of stability 
of the cylindrical shell. For model shells with a  pivotally 
fixed edge, the axisymmetric form of buckling remained 
the first up to a load equal to (0.65-0.7) P

cl
. Upon exceeding 

the indicated load values, the cyclically symmetric forms of 
buckling were becoming the first. The axisymmetric form 
of buckling remained the first until the critical load was 
reached on shell models where a nonlinear edge effect does 
not develop. This can be achieved with a  zero Poisson’s 
ratio, as well as when fixing the shell at its edges only 
with tangent supports (they prevent movement along the 
circumferential coordinate). However, the last fixing option 
(absence of radial support) leads to a significant reduction 
in the critical load.

Thus, the mutual arrangement of the eigen forms of loss of 
stability changes (Figure 1).

Calculations in this paper for a  number of hinged 
and fixed shells showed that the axisymmetric and skew-
symmetric forms of loss of stability remain first up to a load 
of (0.65-0.7) P

cr
. However, further, these forms “yield” the 

first place (corresponding to the least rigidity of the shell) 
to skew-symmetric forms. A  particularity of these forms 
is the development of waves of the greatest amplitude 
near the edge of the shell. When from the edges, the wave 
amplitude decreases sharply [16]. This change in forms of 
loss of stability occurs with simultaneous more intensive 
development of the edge effect (as the compressive load 
approaches the critical value). When the load reaches the 
pre-critical value of the axisymmetric and skew-symmetric 
forms of loss of stability, there are no among the first ten 
eigen forms of the shell (Figure 2). At this point, the first 
two “zero” eigen forms W1

0  and W 0
2  are the same. These 

are cyclically symmetrical double waveforms, rotated 
relative to each other by 6°. Therefore, the initial form of 
loss of stability is formed as a linear combination of these 
forms, which is summed with an axisymmetric pre-critical 
equilibrium

WWW W .. / . precrf post cr
0

1 1
0

22p p= + +v v .	 (42)

When can a  classical solution be actually used? The 
answer is simple - when the edge effect will not develop 
(the standard conditions for hinging and fixing are meant). 
However, with such boundary conditions, one can avoid 
constraining Poisson expansion if the Poisson’s ratio is zero 
(v = 0). In this case, the linearized classical solution of the 
stability problem can be used

E
R3

crv
d= .	 (43)

In this case, the first eigen form of loss of stability is 
axisymmetric. But it can be a multiple.

Figure 3 shows eigen forms for the Kroll’s shell at zero 
load (a) and for pre-critical equilibrium (b), (P = 760 kN, 
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