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A COMPARISON OF MACHINE LEARNING-BASED INDIVIDUAL
MOBILITY CLASSIFICATION MODELS DEVELOPED ON SENSOR
READINGS FROM LOOSELY ATTACHED SMARTPHONES

General mobility estimation is demanded for strateqy, policy, systems and services developments and operations in

tramsport, urban development and telecommunications. Here is proposed an individual motion readings collection with

preserved privacy through loosely fit smartphones, as a novel sole inertial sensors use in commercial-grade smartphones

Sfor a wide population data collection, without the need for the new infrastructure and attaching devices. It is shown
that the statistical learning-based models of individual mobility classification per means of transport are capable of
overcoming the variance introduced by the proposed data collection method. The success of the proposed methodology
in a small-scale experiment for the Individual Mobility Classification Model development, using selected statistical

learning methods, is demonstrated.
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1 Introduction

Mobility may be seen as the level of one’s ability
to move physically, easily and without restrictions in
a given framework of the individual and collective
transportation infrastructure, that involves different means
(modes) of transport and walk. The mobility estimation is
a mathematical process of the evidence-based estimation
of the level of mobility within the given spatio-temporal
constraints. It is considered as a result of integration of the
individual mobilities observations.

Modern information and communications systems
provide foundation for the information and services
provision in relation to user whereabouts. The mobile
telecommunications Location-Based Services (LBS)
started to exploit the case [1]. This trend expanded to
other disciplines including Intelligent Transport Systems,
general human activity recognition [2-3], mobile health,
medical diagnostics and convalescence [4]. The provision
of information and services relies upon user’s position
determination [5-6], followed by sub-setting the contextual
information to the estimated position of the user served.
Authors of [1] proposed the now accepted LBS model that
facilitate the position-location duality, through recognition
of position as a place of existence determined in the
physical world, and location as a place of existence in the
world of context (the world of information). It clarified
the need for the context recognition, as an alternative to
position determination and contribution to establishment of
location intelligence. Location intelligence is understood as
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a discipline addressing discovery, identification, exploration
and exploitation of common patterns in location (i.e.
context-related) dynamics. The term localisation will
comprise a set of methods for determination of location
relation classes. This may include identification of the
mobility patterns (classes of location-related behaviour).
Formal description of human mobility has been addressed
from biological and medical [7], to mathematical [8]
perspectives.

A number of studies addressed exploitation of
position and location for location intelligence, utilising
increasingly smartphone sensors readings and records of
telecommunication activity as data sources. In the now
landmark manuscript, authors defined the statistical model
of human mobility in the physical (material) world, [9].
Hausmann in [10] outlined the mathematical framework
for studying human mobility. Researches showed that
position awareness is not a necessary requirement for
(human) mobility classification. Gustafsson established the
framework and demonstrated the approach in the position
estimation through sensor data fusion for requirements-
defined classes of Location-Based Services, [5]. In [3]
is defined a generalised framework for human mobility
classification based on various sets of motion activity
observations, while in [11] methodologies for position
determination using wearable sensors were surveyed.
A smartphone sensors-based position estimation method
for constrained in-doors environments is presented in
[12]. The selected machine learning methods performance
in recognition of individual human motion detection were
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surveyed in [2]. The group mobility has been addressed as
well in a number of studies, as outlined in [13].

Smartphones have come equipped with a set of high-
precision motion sensors and introduced them for everyday
utilisation in a modern society. Disciplines ranging from
location intelligence and telecommunications to medicine,
benefit from data science methods applications on massive
position- and location-related observation data collection.
The smartphone opportunistic sensor approach is on the
rise to integrate physical sensors with the context [14].
Ahmed and Song developed and demonstrated a Bayesian
method for human motion classification, which includes
the learning process of new classes of motion unknown
to the system, based on the utilisation of smartphone
accelerometers, [15]. Performance of four machine learning
methods in resolution of the problem of the human motion
class identification, based on bespoke inertial sensors set on
human limbs (i.e. not smartphone ones), with the k-Nearest
Neighbour method presenting the best performance for
the set-up were examined in [16]. Authors of [17] gave
a general overview of the machine learning methods for
classification of human motion using smartphone-based
sensors, along with recommendations on the experimental
studies design. Sama demonstrated the approach in human
activity recognition using observations from smartphone
sensors, [18] while in [19] application of feature selection
methods for human activity recognition using bespoke
wearable sensors is discussed. Smartphone sensor data
were associated with driver environment descriptors to
accomplish machine learning-based driver behaviour
profiling in [20]. In [21] is demonstrated a method for
seamless rover tracking based on the internet activity
data collection. [Benefits of context awareness for indoors
localisation were examined in [22]. The smartphone-based
opportunistic sensing still fails in expansion beyond the
physically attached-to-body devices and the infrastructure-
related context (availability and quality of the network
communications signals, or a number of infrastructure-
based sensors such as CCTV). The majority of utilisations
rely on satellite navigation, at least partially, rendering the
approach limited to spaces with the GNSS signals available
in required quality.

Numerous studies consider smartphone sensor
readings in medical applications and services especially as
diagnostic tool in neurology, orthopaedic and sport medicine.
Haines et al. addressed the global health observations using
smartphone sensor readings and modern internet-based
communication technology, [23], while in [24] a case of
mobility characterisation using wearable sensors in healthy,
elderly and stroke patients was examined. Authors of [25]
assessed mobility sensors, including those in smartphones,
as sources of diagnostic and status information, requiring
physical attachment to the patient’s body for the alignment
of the reference systems.

Machine learning methods have been used for
navigation and mobility modelling scenarios. Still, the
traditional approaches failed to loose requirements on
smartphone sensor deployment and to consider a wider

integration with context. Palaghias reviewed and deployed
machine learning methods for interpretation of human
behaviour, depending on the complex set of various
on-body or external infrastructure-related sensors, [26].
Authors of [27] presented a method for Origin-Destination
Matrices (ODMs) estimation, as an indicator of general
mobility, from the mobile communications activity records,
without utilisation of the smartphone inertial sensors and
without consideration of individual mobility, for privacy
reasons.

The studies presented here rely upon the physical
attachment of a motion sensor on the individual’s body
using a dedicated additional attaching device. Such an
assemblage should be operated in a prescribed manner by
trained users. Observations are then utilised for mobility
classification as inputs for model development methods,
selected according to statistical properties of observations
[28]. A complexity of deployment reduces prospects of the
wide application in a more objective population sample and
scenarios of usage. Dependence on position determination
renders many methods inconsistent and unusable without
the high-quality position estimation.

This study was aimed at recognition and classification
of the means of travel based on observations from
smartphone sensors through utilisation of machine learning-
based classification model development methods for
experimental data-based individual mobility classification,
[28]. The means of travel are defined as the manner in which
an individual using a smartphone roams within the given
transportation infrastructure (including pedestrian areas)
utilising either a transport device, or simply walking. This
research hypothesises that: (i) the novel method for the
individual mobility data collection provides observations
of the quality and resolution sufficient for mobility
classification task and (ii) the methods for the individual
mobility classification model development exist that utilise
observations from the proposed novel method for the
individual motion data collection of the sufficient model
performance. The objectives of this study are, as follows:
(i) development of the motion data collection method
based on the loosely attached smartphone inertial sensors
(accelerometers, gravity sensors, magnetometers, gyros)
with the embedded reference frames alignment, to serve
the mobility classification (estimation) model development,
(ii) the mobility classification method selection that will
exploit potentials of the loosely attached smartphone
sensor observations and (iii) comparison of the mobility
estimation and classification models developed using the
presented methodology to provide the best practice for
the mobility estimation studies of different scales. This
research does not aim at development of the overall
mobility model. It proposes the methodology for collection
of the representative massive dataset and the statistical
learning-based methods for development of the individual
mobility classification model. The results have the potential
of utilisation in Location-Based Services (LBS), urban
and transport strategic planning, location intelligence,
medical diagnostics and conditions’ observation, (urban)
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Figure 1 Requirement for the reference frames alignment

operational mobility management, Intelligent Transport
Systems and emergency relief.

The manuscript maintains a simple structure, as follows.
Section 1 (this section) states the problem, surveys the
research state-of-the-art, and outlines aims and objectives
of the research presented in the manuscript. Section 2
formalises the problem of reference frameworks alignment,
proposes the novel method for the loosely fit smartphone
data collection, describes the experimental smartphone
motion data collected using the proposed method in
Krakow, Poland, and Zagreb, Croatia. Description includes
the exploratory statistical analysis. Finally, a selection of
statistical learning methods for the individual mobility
classification model development is introduced, based
on the statistical properties of experimental motion data.
Section 3 outlines the individual mobility classification
models developed using the selected statistical learning
methods and experimental data and examines their
performance for decision on the most suitable individual
mobility classification model. The concluding Section 4
summarises the study’s results and contributions, the
benefits and shortcomings identified and outlines subjects
of the future research.

2 Method and material

Inertial sensors measure motion properties very
accurately, while retaining a low-cost investments of
measurements [6]. The smartphone inertial sensors allow
for the low-cost high-precision (i.e. with the consistent
repeatability) observations of the motion variables (linear
acceleration, direction of movement etc.). The high
accuracy is accomplished by simple calibration procedures,
already conducted by users without the need for further
education, or with the sensor information fusion processes
[29]. The accuracy levels differ slightly, depending on
the actual smartphone realisation [29-30]. The slight
differences in the motion sensor accuracy are considered

acceptable in classification modelling scenarios, since the
model development methods anticipated the existence of
variance in observations and addressed them in the model
development process.

However, the measurement methodology must ensure
that the reference frames (coordinate systems) of all the
components of the system comply with each other [31].
Mobility estimation problem concerns the measurement
environment that comprises components depicted in Figure
1, as follows: (i) measuring unit (smartphone equipped with
inertial motion sensors), (ii) measurement object (mobile
individual), (iii) transport device (if a mobile individual is
assisted in his or her mobility by train, tram, car, bicycle or
some other device), (iv) stationary mobility infrastructure
(road, pavement).

Each component of mobility estimation environment
utilises its own spatial reference frame (co-ordinate system)
K a L =1, ..., 4, respectively. Measurements taken by
measuring unit may be considered in relation to the other
components of the mobility estimation environment only
if at least one of the presumptions are fulfilled, as follows:

P1I: Spatial reference frames of a measuring unit (K),
measurement object (K,), transport device (K,) and
mobility infrastructure (K) are correspondent (equal),

P2: a set oftransfonnationsj;j i=1,..,47=1,..,4%,
1 #j, that transform positions and measurements taken in
one spatial reference frame into another, exists.

The P1presumptionis addressed with a tailored physical
fitting of a mobile device to a measurement object’s body.
The attachment means assures that the sensors in a mobile
unit are measuring the same motion as the individual’s
one. The need for an additional, often costly, infrastructure
(fitting device and method) and user training in operation
emerge as a drawback of this approach, preventing its
wider use and affecting the quality of representation of
a targeted population. Here, a novel method for motion
readings collection, using inexpensive and accurate inertial
sensors in a widespread and frequently used smartphones,
is proposed. The proposal results from the statistical
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analysis of inertial sensors readings and common practices
in smartphone utilisation.

Modern smartphone application usage often requires
the end-user’s attention and machine-to-individual
communication through an application interface. The
common practice of a smartphone application utilisation
results in the common pose in which an individual is loosely
fixed with his or her smartphone. A loose (approximate)
compliance between a mobile measurement’s devices
(inertial sensor in a smartphone) and measurement object
(an end-user) is accomplished without the need for physical
fitting or training the end-user. The proposed method
assures at least a loose compliance between the spatial
reference frames of measured object (an individual using
a smartphone) and of a transport device, considering an
end-user would utilise his or her smartphone while standing
or being seated in a transport device (car, taxi, train, tram
etc.).

A simple algorithm is developed to identify a common
pose of a smartphone utilisation that involves comparison
of the rate of change of the inertial sensor readings.
Inertial sensor readings are collected when taken during
the interaction with a smartphone in a characteristic
pose. The proposed method opens prospects for a wide-
spread anonymised individual mobility data collection
using commercial-grade smartphones without additional
equipment or operational training.

The proposed motion data collection method was
demonstrated in the solution of the individual mobility
classification problem. The individual motion smartphone
data sets were collected by the team members volunteering
to utilise the proposed loose-fit smartphone in a small-
scale experiment. It intended to serve as the proof-of-
principle and as the motivation for a wider data collection
for the mobility estimation for targeted regions in the
future. Volunteering data collectors followed the proposed
methodology and behaved like ordinary smartphone users,
frequently utilising various applications. A dedicated
smartphone application and the data post-processing
identified scenarios of the attention given to interactions
with smartphones and recorded the inertial sensors
reading for the individual mobility classification model
development. The proposed methodology was used in
three common cases of urban mobility, with overlapping
nature of descriptors: (i) walking (walk), (ii) travelling
by bus (bus), (iii) travelling by tram (tram). The cases
selected in this research are to be expanded in the future
further to various means (modes) of transport. Overlapping
statistical characteristics arise inevitably from the similarity
of movement in urban traffic, especially during the rush-
hours, thus reflecting the variance added to the original
data.

The problem of the added variance in data was
addressed by utilisation of the supervised machine learning-
based methods for classification model development,
selected for their nominal capacity in addressing data with
statistical properties of the same nature as those collected
with our experiment [28, 32], as follows: (i) Random Forest

(RF) method, (ii) k-Nearest Neighbours (KNN) method, (iii)
Least Square Support Vector Machine with Radial Kernel
Function (LSSVMR) method, (iv) Support Vector Machine
with Radial Kernel Function (SVM) method, (v) Linear
Discriminant Analysis (LDA) and (vi) Classification and
Regression Tree (CART) method.

A comprehensive overview of the methods involved,
their characteristics, ranges of applications and details
of implementation in the open-source R framework for
statistical computing [33] may be found elsewhere [28,
34-35].

The classification statistical learning methods for
the model development were deployed using resampling
approach [28, 35] to mitigate randomness (variance) in data
split and method. The cross-validation-based approach
was determined as required after significant differences
in models performances were found, resulting from the
particular means of the original data set division into
training and test sets. A dedicated software was developed
in the open-source R environment for statistical computing,
using the R libraries: caret [35] and forecast [36] and their
dependencies. The used R software integrated statistical
learning methods for the model development with those
aimed at developed models performance assessment.
Model performance was examined through the performance
metrics involving Confusion Matrix and Classification
Accuracy and Kappa parameters [28, 35].

The smartphone inertial sensor readings were collected
in the identified application usage pose from smartphone
inertial sensors, as follows:

(i) Accel_x, denotes accelerometer readings of the
acceleration vector x-component, in [mm/s?],

(i) Accel_y, denotes accelerometer readings of the
acceleration vector y-component, in [mm/s?],

(iii) Accel_z, denotes accelerometer readings of the
acceleration vector z-component, in [mm/s?],

(iv) Gyro_x, denotes gyroscope readings of the angular
velocity vector x-component, in [rad/s],

(v) Gyro_y, denotes gyroscope readings of the angular
velocity vector y-component, in [rad/s],

(vi) Gyro_z, denotes gyroscope readings of the angular
velocity vector z-component, in [rad/s],

(vil) Magnetic_x, denotes magnetic sensor readings of
the geomagnetic field density vector x-component, in [nT],

(viii) Magnetic_y, denotes magnetic sensor readings
of the geomagnetic field density vector y-component, in
[nT], and

(ix) Magnetic_z, denotes magnetic sensor readings of
the geomagnetic field density vector z-component, in [nT].

The variables above served as predictors (features) of
the Individual Mobility Classification Model.

The actual Category in which readings were taken was
set the response (outcome) of the model.

Readings were collected using the Android application
AndroSensor [37] on a Motorola G5 smartphone and stored
internally for the post-processing during the experiment
conducted in cities of Krakow, Poland and Zagreb, Croatia
in Winter of 2018.
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Figure 3 Experimental statistical distribution density functions of predictors (features)

An intentionally unbalanced set of readings was
collected, (Figure 2), to examine robustness of the
statistical learning classification methods in the specific
scenario under consideration. Overlapping of statistical
distribution density functions of predictors is observed
and a wide range of statistical properties of predictors are
evident from the exploratory data analysis. The variety of
individual predictors variances results in the complexity

of the process modelled. That fact leads to selection of
the model development methods capable of encompassing
the complexity of variances, including those generated by
the loosely attached smartphone sensors data collection
method [32].

The original data set was split into training (80%)
and test (20%) sets in a randomised manner, utilising the
common statistical learning practice based on the Pareto
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Figure 4 Correlation matrix of nine predictors in the experimental data set
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Figure 5 Comparison of the accuracy (left) and kappa (right) model performance statistics for the six models:

CART, LDA, LSSVMR,

principle [28]. Cross-validation was utilised to compensate
for the randomised original data split and for the optimised
model development, as an another common statistical
learning practice [32].

3 Research results

This research aimed at developing the method for
massive data collection in different scenarios across the
population and at justifying utilisation of statistical learning
methods in mitigation the additional variance imposed by
the process. The experimental data set collected extends
a wide variety of statistical properties, as evident in
estimates of experimental density functions depicted in
Figure 3. The predictors (features) in the experimental
data set were mostly uncorrelated, as evident from the
correlation matrix in Figure 4.

The proposed loose-fitted smartphone procedure is
more contextually oriented, compared with the traditional
approach of the tight physical fitting. As a result, the
experimental results (readings) encompassed a larger
variance, due to: (i) loose fitting (approximate equality

SVM, KNN and RF

between the reference frames) and (ii) introduction of
complex parameter-overlapping classification scenarios.

It was intended to tackle the problems with the
dedicated statistical and statistical learning methods for
model development, as outlined in Section 2. Despite the
differences in statistical properties observed in data, it
was proceeded by modelling the development without
deployment of any data preparation activity (transforms,
feature reduction, or normalisation). Introduction of the
resampling procedure was the only modification of the
original method implementation that was used to mitigate
randomness introduced by the very methods and variance
inherited in data. The caret R package allowed for a targeted
model developments, and assessment of their performance.
The resampling procedure was optimised using the Kappa
parameter [35]. Statistical analysis of model performance
parameters is presented in Figure 5 and box-plots of the
same performance parameters in Figure 6.

Two model development strategies were examined
for their difference in classification approach, and results
of their models are addressed and presented here in more
details. The Support Vector Machine (SVM) approach
is recognised widely as a very robust method for the
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Figure 6 Boxplots of model performance parameters

Table 1 Confusion matrix of the Support Vector Machine with the Radial Kernel Function (SVM) Mobility Classification

model
Prediction/Reference bus tram walk
bus 73 11 0
tram 1 38 2
walk 0 0 10
Table 2 Confusion matrix and statistics of the Random Forest (RF) Mobility Classification model
Prediction/Reference bus tram walk
bus 72 2 0
tram 2 47 0
walk 0 0 12
Table 3 The overall statistics of the two competing models
Overall statistics SVM RF
Accuracy 0.8963 0.9704
95% CI (0.8321, 0.9421) (0.9259, 0.9919)
Kappa 0.8087 0.9471

classification model development. With a range of their
kernel function, the SVM allows for fine-tuning of the
models developed, and yields well-behaving models [28].
The Random Forest (RF) approach tackles easily a large-
variance data, encompassing well the extended variance.
Additionally, the RF models are not prone to overfitting
[28]. Both approaches were exploited, with the resampling
procedure deployed in both cases.

The Support Vector Machine with the Radial Kernel
Function (SVM) model performed as depicted in Table 1.
While providing good accuracy and fair Kappa parameter,
the SVM model struggles in recognition of the transport
means in low-level dynamics conditions, as seen from the
confusion matrix. The SVM model failed in recognition
of tram travel and even walk, during the low-speed and

low-dynamics travels. Utilisation of the Random Forest
approach yields the RF Mobility Classification Model of
a far better performance, as shown in Table 2.

The RF Mobility Classification Model reached better
accuracy of more than 97% and improved the Kappa
parameter value. Its confusion matrix contains just four
instances of the bus-tram misclassification, apparently in
the very similar dynamical conditions. Walk is identified
correctly.

Table 3 outlines the overall statistics (model
performance parameters) for the two competing models
extending the best performance.

The z-statistics yields the statistical significance of the
accuracy difference between the SVM and the RF models at
p =0.02811 (a = 0.05).
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4 Conclusion

The problem of general mobility estimation is
addressed here with introduction of an inexpensive method
for individual mobility data collection using wide-spread
utilisation of commercial-grade smartphones. With the
loose smartphone attachment to user in a common pose
of a smartphone usage, the correspondence of the all
the reference frames involved was accomplished. This
accomplishment allows for utilisation of the smartphone
inertial sensor readings for the individual mobility
classification. The use of inertial sensor readings establishes
a foundation for anonymised mobility data collection,
thus allowing for sustained privacy of individual users.
Additionally, the proposed methodology does not rely
upon the high-precision absolute position determination,
often unavailable in a number of high-population scenarios
(indoors, city centres) where the individual mobility
assessment is particularly needed.

The acceptable extent of additional variance in data
resulting from the loose-attachment approach was shown
and the effectiveness of the statistical learning approach in
the Individual Mobility Classification Model development
under the circumstances of the enlarged variance in data

Reference

was demonstrated. In comparison of various classification
models approaches examined, it was found that the
Random Forest Individual Mobility Classification Model is
the best performer, with the development and performance
assessment conducted with the tailored software, developed
in the R environment for statistical computing. The RF
Individual Mobility Classification Model has returned the
95% confidence interval of 0.0305 + 0.0290, for the N =
135 testing sub-set of the sparse and unbalanced original
data. The methodology proposed and models developed
here form a foundation for expanding the crowdsourcing
efforts in experimental data collection for the individual
mobility classification based on the widespread set of
scenarios of smartphone usage while travelling. The general
nation-wide, regional, or city-wide mobility estimation will
emerge from information fusion of the individual mobility
classification models.

The intention is to pursue this research with assemblage
of the loosely attached smartphone sensor observation
database with different mobility scenarios and a wider
range of individual mobility means (transportation modes)
involved and with examination of potentials for utilisation
of refined statistical learning-based classification model
development methods.
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