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Resume
The problem considered is to estimate the image position of a spatially extended 
object. It is assumed that the shape of the image intensity is a priori unknown, 
but it can be predicted with some error. In order to synthesize the estimate 
of the image position, the quasi-likelihood version of the maximum likelihood 
method is used. Behavior of the signal function in the neighborhood of the real 
image position is studied. Characteristics of the resulting estimate, such as bias 
and dispersion, are found by means of the local Markov approximation method. 
Influence of non-uniformity of the received image intensity upon the estimate 
accuracy is demonstrated by an example of receiving the rectangular image with 
linearly varying intensity.
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statistical nature of the observed field ,x yp^ h  taken into 
account, are considered in [2-10]. It is presupposed that 
the useful image is distorted by both the spatial noise 
and the additive or applicative background. When using 
the additive model of interaction between the image and 
the background, the intensities of the quasi-deterministic 
image and the background are different from zero within 
the area occupied by the image. However, in the case of the 
applicative model use, the image shadows background, i.e. 
the background intensity is zero within the area occupied by 
the image. Algorithms for detecting the quasi-deterministic 
image in the presence of a background are studied in [8], 
while in [9-10] algorithms for processing the image with 
unknown position, observed in the presence of the additive 
Gaussian spatial white noise, are developed. In particular, in 
[10], efficiency of the non-uniform image position estimate 
is tested for the case when the image intensity distribution 
is a priori known. However, in practice, there may be cases 
where the image intensity distribution is unknown. Thus, 
it is of interest to consider a more general case including 
estimating the position of the image with an unknown 
varying intensity.

In order to estimate the image position, the quasi-
likelihood (QL) measurer can be applied that is synthesized 
for some predicted (presupposed) intensity distribution of 
the image of the same shape and area. In this paper, both 

1	 Introduction 

Systems for estimating (predicting) the position of 
a spatially extended object by its own image are widely used 
for security purposes, traffic monitoring and management, 
in railway transport and in other sectors [1-4]. However, the 
information processing algorithms, applied in the specified 
systems, can often provide the simplest operations only, 
such as detection of a  moving object against a  relatively 
simple background with a subsequent measurement of its 
speed. Thus, such systems, in fact, are video surveillance 
systems and not the measuring ones. A more complicated 
task is when realization of the two-dimensional random 
field ,x yp^ h  is processed, which, in general case, includes 
the image of an object with unknown coordinates to be 
measured, the background and the spatial noise [2-5]. The 
useful image is often described by a  quasi-deterministic 
function ,s x y^ h  of the two variables determining the 
dependence of the image intensity upon the coordinates 
,x y^ h . One can call ,s x y^ h  the intensity distribution or the 

intensity profile of the image.
Depending on both the nature of the image and the 

resolution of the receiving system, the function ,s x y^ h  
may be a  regular or discontinuous one [5]. Discontinuous 
functions describe objects with well-defined boundaries.

Some tasks of optimal and suboptimal image 
processing of the spatially extended objects, with the 
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is necessary to estimate the unknown position 0m  of the 
image , ,s x y 0m^ h  with the unknown intensity distribution 
,f x y^ h .

3	 The estimation algorithm synthesis

If the distribution intensity ,f x y^ h  of Equation (6) 
is known, then it is possible to find the logarithm of the 
functional of the likelihood ratio (FLR) and then develop the 
maximum likelihood (ML) estimation algorithm. According 
to the ML method [11-12], in order to obtain an estimate mt  
of the position 0m  of Equation (6), it is necessary to form 
the component of the FLR logarithm depending on the 
current value λ of the unknown parameter 0m  as follows 
[13-14]

, , , ,

/ , / .

L N x y s x y dxdy2

2 2max max

m
0

!

m p m

m m m

=

-
X

^ ^ ^h h h

6 @
##

	 (7)

The ML estimate mm  of the image position coincides 
with the position of the greatest maximum of the decision 
statistics in Equation (7), that is, arg supLm mm m= ^ h .

If the image intensity ,f x y^ h  is a priori unknown, then 
one can use the estimation algorithm synthesized for some 
presupposed image intensity distribution ,g x y 0$^ h . 
Then, the output of the receiver produces some function

, , ,L N x y s x y dxdy2
0

m p m=
X

u^ ^ ^h h h## .	 (8)

Here ,s x yu^ h  is the reference image and, in general 
case, , ,f x y g x y!^ ^h h . The QL algorithm, for finding the 
estimate mt  of the position 0m , includes the search of the 
position of the greatest maximum of the signal in Equation 
(8) at the receiver output:

, / , /arg supL 2 2max max!m m m m m= -t ^ h 6 @ .	 (9)

If the function ,f x y^ h  is a priori known so that

, ,f x y g x y=^ ^h h ,	 (10)

then Equation (8) coincides with the FLR logarithm when 
implementing the optimal reception in Equation (7) and the 
QL estimate in Equation (9) coincides with the ML estimate 

mm .

4	 The statistical characteristics of the decision 
statistics

In order to determine the characteristics of the QL 
estimate in Equation (9), the statistical properties of 
the decision statistics in Equation (8) are examined. By 
substituting Equation (3) into Equation (8), the functional 
in Equation (8) is presented as the sum of signal and noise 
components [12]:

synthesis and analysis of the QL algorithm for estimating 
the unknown position of the two-dimensional signal (image) 
with the unknown intensity distribution are carried out. 
Influence with a priori ignorance of the image parameters 
upon the efficiency of the resulting estimate is studied.

2	 The problem statement

The image with the unknown intensity and position can 
be described by the function [5, 7-10]

, , , , ,s x y f x y I x ym h m h m h= - - - -^ ^ ^h h h ,	 (1)

where ,f x y^ h  is the function differentiable in both 
arguments that describes the intensity distribution, while 
λ and η are values characterizing the image position in the 
plane two-dimensional observation area Ω. Equation (1) 
occupies the area ,s 1m hX X^ h  described by the indicator 
function
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Let the realization of the Gaussian random field

, , , , , , ,x y s x y n x y x y0 0 !p m h X= +^ ^ ^h h h 	 (3)

be observed within the area Ω. Here 0m  and 0h  are the 
unknown position parameters and ,n x y^ h  is the spatial 
Gaussian white noise with zero mathematical expectation 
and the one-side spectral density N0 .

In the observation area Ω, one chooses the coordinate 
system so that the equality [9-10]

, ,xI x y dxdy yI x y dxdy=
XX

^ ^h h## ## 	 (4)

is satisfied, that is, the origin is located in the centre of 
the area ,0 0sX ^ h  described by the indicator ,I x y^ h . 
Then λ and η are coordinates of the centre of the area 

,s m hX ^ h  occupied by the image and described by the 
indicator function ,I x ym h- -^ h , while 0m  and 0h  are 
the unknown real coordinates of the centre of the image 
presented in the observable realization in Equation (3), they 
determine its position.

Let it be assumed that the parameter 0h  is a  priori 
known. Then, without loss of generality, one can presume 
that 00h =  and rewrite expressions (3) and (1) as follows

, , , , , ,x y s x y n x y x y0 !p m X= +^ ^ ^h h h ,	 (5)

, , , ,s x y f x y I x ym m m= - -^ ^ ^h h h .	 (6)

The abscissa 0m  of the centre of the area 
, ,y0s s0 /m mX X^ ^h h , occupied by the image, is 

a  priori unknown. Let it takes values from the interval 
/ , /2 2max maxm m-6 @ . By observations in Equation (5), it 
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is the value that characterizes the difference between 
the forms of intensities of the received and the reference 
images.

The noise component in Equation (17) is realization of 
the centered Gaussian random process with the correlation 
function

,

, , /

, .

K N N

g x y g x y dxdy

g x y dxdy

,

1 2 1 2

1 2

2

0

min

S

1 2

m m m m

m m

= =

= - -
m mX

X

t t^

^

^
^ ^

^

^

^

h

h

h
h
h

h

h

h
##

##

	 (20)

In the case of the optimal reception, functions in 
Equations (16) and (20) coincide, that is,

, ,S Kf g f g1 2 1 2m m m m== =
t^ ^h h 	 (21)

for , .1 0 2m m m m= =

If value of the SNR zu  is big enough, then the 
characteristics of the estimation algorithm in Equation 
(9) are defined by the behavior of the signal function in 
the small neighborhood of the real value 0m  of the image 
position. The signal function in Equation (16) is then 
expanded into the Taylor series by the variable λ in the 
neighborhood of the point 0m  and only the term containing 
the first derivative is taken into account there. According 
to (16), the signal function is continuously differentiable to 
both the right and the left of the neighborhood of the point 

0m , excluding the point 0m m=  where the derivative has 
the discontinuity of the first kind. Therefore, expansion of 
the function (16) has the form
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where
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and o 0m m-^ h  denotes the higher-order infinitesimal 
terms compared to 0m m- .

Let, for example, the area , occupied by the image 
and set by the indicator ,I x y^ h , has the form shown in 
Fig. 1. Then, one projects this area on the axis Oy. Here 
ymin , ymax  are the minimum and maximum values of the 
y coordinate of the projection of the area ,0 0SX ^ h  on 
the ordinate axis, respectively. Now, the minimum and 
maximum values of the coordinate on the axis Oy on the 
border of the area ,0 0SX ^ h  are denoted as points A  and 
B, respectively, while the parametric descriptions of the left 

, ,L S N0 0m m m m m= +^ ^ ^h h h .	 (11)

Here

, , ,

, , ,
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,, ,N x yN n x y g x y I dxdy2
0

m m m= - -
X

^ ^ ^ ^h h h h## 	 (13)

are the signal and noise components, respectively.
Similarly to [15], let it be supposed that in the 

neighborhood of the point 0m  the signal function satisfies 
the conditions

,
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while the functions ,f x y^ h  and ,x yg^ h  do not vanish at 
the boundary of the area ,S m hX ^ h . Then, position of the 
maximum of the signal function ,S 0m m^ h  by the variable λ 
coincides with the real value 0m  of the image position and 
the QL estimate in Equation (9) is consistent.

Let , , ,supS S S N f x y2
m 0 0

0
0S

#m m m m= = =
m

X

^ ^ ^
^

h h h
h
##  

,g x y dxdy# ^ h denote the maximum value of the signal 

component (12) and ,N x yN g dxdy2
N
2 2

0
0

2

S

v m= =
X

^ ^
^

h h
h
##  

denote the dispersion of the noise component in Equation 

(13). Taking into account the last representations, one can 
rewrite Equation (11) in the form

,
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where
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are the normalized signal component in Equation 
(16) and noise component in Equation (17), 

,min S S0 0km m m mX X X=^ ^ ^h h h , /z S z Km N fg
2 2 2 2 2v= =u  

is the power signal-to-noise ratio (SNR) at the output of the 
QL receiver,

,z N f x y dxdy22

0

2

0S

=
X

^
^

h
h
## 	 (18)

is the power SNR at the output of the ML receiver 
while Equation (10) is satisfied (i.e. the image intensity 
distributions coincide) and
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When , constf x y =^ h  and  , constg x y !^ h , it is 
convenient to determine the expansion coefficients (23) of 
the signal function according to Equation (26) as follows
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In the case of the optimal reception, the intensity 
distributions of the received and reference images coincide, 
that is, Equation (10) is satisfied and the expansion 
coefficients in Equation (23) of the signal function take the 
form

f dxd .
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The same result has been obtained in [10].
Now consider properties of the correlation function 

in Equation (20). Taking into account equality in Equation 
(21) of the signal in Equation (16) and correlation in 
Equation (20) functions under , ,f x y g x y=^ ^h h , one can 
obtain an asymptotic expansion in Equation (20), while 

02 1 "m m-  as a  special case of Equation (22). By 
substituting ,g x y^ h  instead of ,f x y^ h  in Equation (29), 
for the expansion coefficients in Equation (22) one gets

2
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while d 00 2 . Therefore, if 02 1 "m m- , then the 
correlation function (20) allows the following asymptotic 
representation:

and right parts of the border of the area occupied by the 
image relative to the line AB are described as X y1 ^ h  and 
X y2 ^ h , respectively.

Using the introduced notations (see Figure 1), one can 
rewrite the signal function in Equation (16) in the form
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Differentiating (24) by the variable λ and taking into 
account the finite size of the image existence area, one 
obtains expressions for the expansion coefficients in 
Equation (22):
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where ijd  is the Kronecker delta symbol. In practice, 
different combinations of types of intensity distribution of 
the real and presupposed (reference) images are possible. 
Therefore, carrying out the integration of Equation (25) 
by parts, one can present the expansion coefficients in 
Equation (25) in an alternative way:
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Now are considered several special cases of the intensity 
distribution. If , constg x y =^ h  and , constf x y !^ h , then, 
for the expansion coefficients in Equation (23), Equation 
(25) is convenient because the integral by the variable x is 
reduced to zero and one gets

Figure 1 The type of the area occupied by the image
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By substituting Equation (36) into Equations (34) and 
(35), for the required bias and variance, one obtains
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If shapes of the received and the reference images 
coincide (the condition in Equation (10) is satisfied), then 
according to Equations (29) and (30), d d d1 2 0= =  and 
the bias in Equation (37) and variance in Equation (38) take 
the form

, /b V z d0 13 20 0
4
0
2m m m m= =t t_ _i i ,	 (39)

respectively.
It should be noted that these expressions coincide with 

characteristics of the ML estimate of the image position 
obtained in [10].

Then, one considers, for example, estimate of the 
rectangular image position. Let in the observation area of 
the image be present a  rectangle with sides lx  and ly , 
 parallel to the axes Ox and Oy, respectively. In this case, 
one selects the coordinate system so that its origin is 
located at the intersection of the rectangle diagonals. One 
assumes that the image intensity is described by a  linear 
function that increases in the direction of the angle θ with 
the side lx  (axis Ox):

,

cos sin
cos sin

f x y

AS
l l

q x y q1
2
1

x y
0 i i

i i
=

=
+

- +
+

+

^
^ ^

h
h h< F .	 (40)

Here, the multiplier
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is introduced to provide the constancy of the image energy 
for different values of q and θ. The value /q s smax min=  
characterizes the slope, while S0  - the magnitude of 
the change in the image intensity; ,maxs f x ymax = ^ h , 

, , ,mins f x y x ymin ! X= ^ h , are the maximum and 
minimum intensity values, respectively. For a uniform image 
that has the same area and shape as the non-uniform one, 
the slope is q 1= , so that ,f x y S0=^ h . One chooses 
the uniform image with the intensity ,g x y S0=^ h  as the 
expected one. This corresponds to the case when a receiver 
synthesized for estimating the position of a uniform image 
is applied for the position estimate of a non-uniform image 
in Equations (1), (40). By substituting Equation (40) and 
,g x y S0=^ h  into Equation (27), one finds expressions for 

the expansion coefficients in Equations (22), (31)
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If intensity of the reference image is constant, 
that is,  , constg x y =^ h , then /d l Gy s0 = , where 
l y ymax miny= -  is the length of the image projection on 
the axis Oy (see Fig. 1), Gs  is the image area [10]. While 

2 1m m-  increases, the correlation function in Equation 
(20) decreases and becomes zero, if lx2 1 2m m- . Here 
lx  is the length of the image projection on the axis Ox.

In view of the above, one can conclude that the 
decision statistics in Equation (15) of the QL estimation 
algorithm in Equation (9) is the Gaussian random process, 
for which the mathematical expectation and the correlation 
function, under conditions of high a  posteriori accuracy, 
allow the representations in Equations (22) and (31), 
respectively. The statistical properties of such a  process 
are studied in details in [10, 15]. Taking into account 
Equation (22), relations in Equation (14) conditioning the 
consistency of the QL estimate in Equation (9), can be 
rewritten in a  more convenient form: S 0m 2 , d 0i 2 , 

,i 1 2= . Thus, the conditions in Equations (14) are satisfied 
and the QL estimate in Equation (9) is consistent, if for all 

,y y ymin max! 6 @  the following inequalities hold:

, ,f x y g x y dxdy 0
0s
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h h
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5	 The characteristics of the quasi-likelihood estimate 
of the image position

Next, one seeks characteristics of the image position 
QL estimate in Equation (9), assuming that this estimate 
is consistent. Taking into account the set properties of the 

signal in Equation (22) and correlation in Equation (31) 

functions, the conditional bias b 0 0m m m m= -t t_ i  and 

variance V 0 0
2

m m m m= -t t_ ^i h  of the reliable estimate 
in Equation (9) can be found by applying the local Markov 
approximation method as it is described in [16-17]. As 
a result, one gets

,b
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where

/ , / , ,R d d z z d d i 1 2i1 2 1
2 2 2

0= = =u .	 (36)
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axis). From Figure 2 can be seen that the QL estimate is 
unbiased under q 1= . If q 1! , then, for the same value 
of q, accuracy of the estimate decreases with increasing i , 
and that corresponds to the increasing degree of difference 
between the received and the presupposed images.

In order to characterize the loss in accuracy of the QL 
estimate, while comparing it to the same kind of loss in case 
of the ML estimate, one introduces the relation

/V V0 0 00| m m m m m m=t t t_ _ _i i i ,	 (46)

where V 0m mt_ i  and V 00 m mt_ i  are determined in 
Equations (43) and (44), respectively.

In Figure 3, the graphs demonstrate dependence of the 
loss in the QL estimate accuracy (46) upon the parameter 
q under 1c=  and the varied values of the parameter i
. Here the notations coincide with the ones introduced in 
Figure 2. From Figure 3, it follows that under q 1= , there 
is no loss in the QL estimate accuracy. However, under the 
fixed q 1! , the loss increases with the increasing i  and 
that corresponds to the increasing degree of difference 
between the intensities of the received and the reference 
(presupposed) images. When the value q increases and the 
value i  is fixed, the loss increases.

6 	 Conclusion

Synthesis and analysis of the rather simple QL 
algorithm have been carried out for estimating the position 
of the image with the unknown intensity distribution. As 
a  result, the expansion is found of the signal function 
of the decision statistics in the neighborhood of the 
image position real value. Expressions are obtained for 
the bias and variance of the resulting estimate of the 
measured image coordinate. The dependence of the 
estimate characteristics upon the non-uniformity of the 
image intensity distribution is examined on an example of 
an image with the set intensity distribution. The relations 

Taking into account Equation (41), expressions for 
estimation characteristics in Equations (37) and (38) take 
the form

/b al z a4 1x0
2 2 2

m m = -t u_ ^i h ,	 (42)

V
z
l
a a a a

a a a
2 4 6 4 1

13 15 101x
0 4

2

8 6 4 2

4 2 6

m m =
- + - +
+ + -t

u
_ i .	 (43)

For the case when q 1=  in Equations (41)-(43), one 
obtains expressions for the bias and the variance of the ML 
estimate of the uniform image position that coincide with 
the expressions in Equation (39):

, /b V l z0 13 2x0 00
2 4m m m m= =t t_ _i i ,	 (44)

respectively.
Comparing Equations (42) and (43) to Equation (44), 

one can estimate influence of the non-uniformity of the 
image brightness distribution upon the accuracy of the QL 
estimate of the image position. Unlike the ML estimate, 
the QL estimate is biased as it follows from Equation (42). 
While the deviation of the parameter q from unity increases, 
the absolute magnitude of the estimate bias increases too. 
When the bias is a significant part of the mean-root-square 
error, it significantly reduces the accuracy of the estimate. 
Therefore, one introduces the normalized bias

/b V0 00b m m m m m m=t t t_ _ _i i i ,	 (45)

that shows what proportion of the mean-root-square is the 
bias of the QL estimate.

Graphs of dependence of the normalized bias in 
Equation (45) of the QL estimate upon the parameter q 
under 1c=  and the varied values of the parameter i  
are presented in Figure 2. Here, the curve 1 corresponds 
to value 0i= , the curve 2 - to /16i r= , the curve 
3 - to /8i r= , the curve 4 - to /6i r= , the curve 
5 - to /4i r= , the curve 6 - to /3i r= , the curve 7 - 
to /2i r=  (the last curve coincides with the abscissa 

Figure 2 Dependences of the normalized bias of the image 
position QL estimate 

Figure 3 Dependences of the loss in the accuracy of the 
image position QL estimate due to the ignorance of the 

image intensity
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of the expansion coefficients. The nonparametric estimate 
of the intensity profile can also be used [18].

These results can be used in design of the measuring 
systems for object monitoring in the field of transport 
services, security, process and production control, etc.
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obtained allow determining the loss in accuracy of the 
image position estimate due to a  priori ignorance of the 
image intensity distribution.

In the case when the intensity profiles of the received 
and the reference images differ significantly, so that the 
loss in the QL estimate accuracy becomes significant, an 
adaptation of the estimation algorithm, by the unknown 
intensity profile that leads to the improvement in the 
accuracy of the image position estimate, can be applied. 
One of the possible ways to implement adaptation is 
to expand the intensity profile function in terms of an 
orthogonal function system basis with a further estimation 
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