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Mathematical model of transmission of movement of an electric drive system
that includes long elastic elements, including the non-linear relation between
tensors of strength and deformation is presented in this article. Mentioned type
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1 Introduction

Mathematical modelling of unspecified processes in
the dynamical systems is one of the most topical tasks of
an analysis of complicated technical objects. The electric
drive systems that are used in special-purpose transport
systems have become a part of such process of modelling.
These systems may have long shafts, analysed as long
elastic elements of distributed mechanical parameters [1-2].
Modelling and analysis of such elements makes it necessary
to map a model in a prototypical system. It is particularly
important in the event that concealed movements are
included what extends a model and complicates output
equations of the state of a system [3-4]. Using the modelling
of complex system states allows to analyse it more precisely
and to resign from developing a prototype of a system [5].
Regardless of the type of the analyzed system, computer
simulation carried out based on the mathematical apparatus
allows to determine the parameters affecting the operation
of the system [6-7]. It also allows for analysis of different
event scenarios [8-9]. An example of use of simulation to
analyze a complex special-purpose transport system is
presented in the work [10].

An analysis of transmission of the electric drives’
movement, including long shafts of linear relation between
tensors of strength and deformation was presented in the
articles [5, 11-12]. In the real tasks of applied mechanics,

the assumption, for example, in [4], is not always correct.
Such analysis is applied to high-power drive systems that
often work in hard, diverse conditions (special-purpose
transport tasks - cranes, locomotives) [3, 13-14]. In such
systems, the situations may emerge\ in which the linear
relation between mentioned tensors is disrupted [15]. Then,
the problem emerges how to include mentioned non-linear
physical processes in an equation of the shaft. An attempt
to solve this problem was made, for example, in the work
[15]. Therefore, there is a need to include the non-linear
mechanical processes using the non-linear elements in an
equation of the shaft [15-16]. Another serious problem must
be taken into account. If normal wave equation of torsional
oscillations of a long shaft of linear distributed parameters
has stable analytical solutions (e.g. Fourier method [17]),
then in the case of the non-linear relations, analytical
approach can be used only in some cases. To find a function
of continuum of the shaft, numerical methods must be
applied to solve boundary-value and mixed problems [5,
11-13].

Based on interdisciplinary modified Hamilton-
Ostrogradsky method by extending Lagrangian function [5,
18-20], mathematical model of transmission of movement
of a drive system is presented in the article. The goal of
the article was mathematical modelling of unspecified
processes in a system of transmission of movement of
electric drives that includes non-linear elastic elements of

© 2021 UNIVERSITY OF ZILINA

COMMUNICATIONS 23 (2) C54-Cé4

2
£
B
[=N
3
=}
&
g
:
~
=
E
g
o
&
|

g
£
g
B
2
=]
=9
g
1
=8
=
=]
E
o
&
B
[
E
E
<.
B
(=]
g
:
1=H
©
&
£
g
=2
=.
g
)
E
5
P
g
B
{
&
g
g
=
©
B
g
2
H
g
=
)
B,
:
£
=2

g
e
2
B
=3
B
=
g
8
&
2
s
o
=
£
&
=
g
g
A
g
o
g
o]
E
-3
=
g
H
Q
=3
B
2
=3
&
=
g
=
&
S
=1
=
<
)
g
:
B
B
E
8
B
&
a
=]
2
Ly
e
:
&
B
g
&



MATHEMATICAL MODELLING OF OSCILLATORY PROCESSES IN TRANSMISSION OF MOVEMENT... C55

a long shaft, analysed as a system of distributed mechanical
parameters. To solve equations in the article, the elements
of applied mathematics were also presented.

2 Mathematical model of elastic long shaft
of distributed parameters

To develop a mathematical model of transmission of
movement, modified variation method was applied, which
is based on modification of the Hamilton-Ostrogradsky
principle [5], by extending Lagrangian function with two
elements [16, 21]. The first element includes energy of
dissipation forces and the second one - energy of external
forces of non-potential character. Similar approach was
suggested in an article [18], in which two mentioned
additional elements were added formally to a conservative
Lagrangian, whereas, in another article [5], adding these
elements was justified mathematically. In addition, a method
presented in [5] allows to analyse dynamical systems of not
only lumped parameters, but also to analyse unspecified
processes in the complicated dynamical systems of both
lumped [22] and distributed parameters [1, 2].

Extended action functional according to Hamilton-
Ostrogradsky is the following [5, 23]:

t2
S= f(L*+fL,dz>dt,1: [ L, o))
t ! !
where:
S - extended action functional according to Hamilton-
Ostrogradsky,

I - internal energy functional [5, 16, 21],

L* - modified Lagrangian function [5, 19],

L, - linear density of modified Lagrangian function [5].
Extended Lagrangian function and its linear density are

the following:

L*=T*=P*+@*—D*,

2
L=T—-—PFP+o —D, ®

respectively, where:

T#(T *) - kinetic energy (coenergy),

P’ - conservative energy,

&* - dissipation energy,

D’ - energy of external forces of non-potential character.

Linear densities of mentioned functions are marked
by subscript ¢ [5].

Since the model of a shaft is analysed as a system
of only distributed parameters, then the modified action
functional (S), based on Equation (1) can be written in the
following form:

t2

S= [ [(Ti= P+ @ — D)dld, ®

ol
where:
T, P, ®, D, - appropriate linear densities of energy
functions.

To obtain an equation of movement of the shaft, an
equation of the extremals of a functional - Equation (3) [18,

21] should be calculated; therefore, variation of internal
functional, see Equation (1), with subsequent comparison
to zero is searched for. Then, it looks in the following way
[16, 21]:

81=3 [(Ti— P+ ®— D)l = 0. @
!

In order to find variation, the following procedures are
applied: Gauss-Ostrogradsky theorem, rule of integration by
parts, as well as assumption that the order of differentiation
can be changed, because these procedures are independent
[18-19]. Therefore, mechanical system may be analysed
as a system of infinite degrees of freedom, which is
a counterbalance to the systems of lumped parameters,
in which the number of degrees of freedom is always
determined [1, 2, 5, 15, 19].

An equation of extremals of this functional is the
so-called Euler-Poisson equation [16]:

8- H3)- 8+ S

aq at\ 9q; 9x \ 9q« ox? \ 9qx )
3% (oL 9* (oL \ _
*W( qn )+ axat(aqﬂ) =0,
where:
9 _ 9 _ g _
o = qt, ox = qx, axz = (xxy 6
d%q 9” ©

W =d{qu, Wgt =(qx-.

Insuch acase, for the systems of distributed parameters,
adding specific coordinates is not possible. Therefore, the
so-called function of generalized coordinates is added q(x;,1)
and its generalized velocity ¢,(x,f). In the case of a long
shaft g(x,t) = @(x,t) - function of the shaft rotation angle
and ¢:(x,¢) = w(x,t) - function of rotational speed [5].

Therefore, system of elastic shaft can be presented
using a function of two variables (x,1), x - spatial coordinate
along continuum of the shaft and ¢ - time coordinate.

Elements of the linear densities of extended Lagrangian
function are presented [5, 15]:

oL 7= (38

X 2 at %)
or* _ G(Aqo)Jp/a_go)Z '
ox =0T 2 \ox />
t 9 2
a0* _ . [ E(Ap)( g
e =0 = [ (axat >t:‘rdT’
0 , ®
oD* _ . _
ax :D[ — 0,
where:

p - density of the shaft’s material,

J, - polar moment of inertia of a connecting element,
G( Ago) - shear modulus that depends on value of torsion
between the shaft’s elements,

E(A@) - coefficients of internal dispersion in the shaft
that also depend on value of torsion between elements
of the shaft.
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Figure 1 Diagram of a long shaft of transmission of movement of an electric drive

Assuming that ¢g=¢,q: =
function will be the following:

@, modified Lagrangian

,  JrG(A : :
. pgpq[ Jr < JrGlAg) , i+ 1 [ E(ap)d-cdT. (9)
0
Since:
9 ~ =0, _< aq“) ¥< aQtt): 0, (10

Equation (5) is simplified to the following form:

—w(g—i)—wﬁ—qﬁﬁ Bﬁac;t<88qut> 0.

D

Giving an Equation (9) to Equation (11), changing the
order of differentiation (derivatives from the functions of
generalized coordinates are determined and uninterrupted),
as well as applying derivative theorem from an integral
beyond its upper boundary, one can write:

daL _ _PJra B ‘
ot aqr pzp at 9q: at = —pJrai, (12)
9L _Jra o .
x3q. 2 9x ag.! G(Ap)gt] )
= Jr 2l G(ag)a.)
o oL _ 12 2 9|/
oxdt ¢~ 2 90X Qu Ot Of(‘f(A(P)th)t,TdT "

_ %8_3_ E(8p)q = 2LE(8p)q.).

Summing up Equations (12 - 14), including relations:
q=@,q: = ®, finally equation of the shaft of non-linear
elastic and dissipative elements are obtained:

o122 1 12 Glag)(22)] +

at?

T ax[f(A‘/’)<axat>]: 0

In a theory of non-linear applied mechanics, following

(15)

assumptions are widely applied [15, 17, 24]:

—(p>_>G<g_g€)m1’

G(Aqo)(a i~
f(A‘/’)< axat> f(%)ﬂ .

where coefficients are written in the following way [15]:

_2m—1 _2np—1
VT om— 1 2my — 17

n1,nz,mi,ms € N,

an

here: N -natural number.

Mentioned coefficients are calculated based on
experimental data, including Equation (17), [15]. Assuming
additionally that coefficients G(A@)and £(A@) do not
depend on a coordinate x, an equation of a long shaft can
be written in the following way:

20 3 [ G ”“] o] £ (2 "“]

a2 x| p < ox ) T ax m< 8x8t> ) (18)
or presented in the form:

Yo _ G )

=S+ L)L+ "

3 9%
+%(,u + 1)( axg;) ngt

Therefore, consider the general case of a long shaft,
as an element of transmission of movement of electric
drives. The shaft is connected with a driving motor and load
mechanism, Figure 1.

The following marks were used in Figure 1: Mgy
- electromagnetic moment of a driving motor, My - load
moment of a drive, Jgzy, /v- moments of inertia of an
engine rotor and load system, respectively, x - spatial
coordinate, N - the number of the nodes of discretization
of Equation (19), Ax- step of discretization of spatial
derivatives.

The boundary conditions for Equation (19) are based
on equality of electromagnetic moments (or load) and
elasticity and dissipation in the ends of the shaft in
accordance with d’Alembert principle), [5, 17]

2

]51112)7? 76]‘”(8(0)”1 —07
- . - (20)
7‘5(%) - = Mgy,
2’0 A 1
]NW Jr G]P(%> x:L+ (21)
Lel ) = My.
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In order to simplify it, it was assumed that in the
ends of the shaft, external moments are equal to specific
moments of elasticity. Therefore, the following equations
can be written:

A AQN
GJPAL;C1 = Mgu, GJPALJC\ = — My, (22)
where, see Figure 1:
AP1 = Qs — @1, AN = PN — PN-1. (23)

Assuming that Ax = L/2, boundary conditions can
be written in the following way (angle of torsions of
transmission):

_ LMzgu

¢(x,t)|x:0 = 2G/)» = a = const, 24)
¢(x,t)|x:1 = 2%4]77 = —a = const . (25)

Due to the fact that the shaft is inhibited, use of
boundary conditions in Equations (24) and (25) to examine
non-linear shaft is not sufficient. Therefore, two types of
boundary conditions should be used. In the first case, the
conditions are analysed using the Heaviside function [17]:
cai(t)=a 1(t) (26)

From the point of view of applied physics, the use
of such conditions means that the shaft was twisted and
stabilized in such a state. Only mechanical wave moves
towards the shaft, whereas, the ends of the shaft are
immovable, which, with reference to applied mechanics,
does not provide sufficient information about dynamics of
the shaft.

In the second case, boundary conditions are analysed
as a Dirac function:

da(t) _ di(t) _

ax(t) = di a= gy ad(t).

@n

Equation (27) should be understood as an impulse
of finite value of amplitude a. From the point of view of
applied physics, use of the boundary conditions in Equation
(27) means that the shaft was twisted in # = ¢ — 0, and
in a time moment ¢t = ¢ + 0 - the ends of the shaft were
quickly relieved. Therefore, not only that the mechanical
wave is moving in the shaft, just like in the previous cause,
but the elements of the shaft also rotate. It is interesting
from the point of view of applied mechanics, providing
information about dynamics of movement.

To solve Equation (19), simple method was applied [5].

For the conditions of the first type, see Equation (26),
discrete system of normal non-linear differential equations
is the following:

opr=a 0:=0,pov=—a ov=0, (28)

dw; _ VG @i = 205 T @i
a ~tbp (AxY X
Qi1 — Qi) S
X 2A% +ut I)pr x @)
Xa)jfl—ZCOj‘i‘a)ﬂll—wj‘l_wf*l]ﬂ
(Ax)z 2Ax ’
4D _ P23 N—1. (30)

dt

For the boundary conditions of the second type, see
Equation (27), system of equations is the following:

dw,  Mey — (@1 — @2) — V(w1 — @2) a1
dr Jew + 1 ’ (1)
d;;j — (v + 1);6) Qi1 *(i(if);r Piit
Qir1— Qi1 ] i
o v I Y (32)
Wj-1— 20, + Wj+1[ Wj+1— @Wj—1 ]"
(AX)Z 2Ax ’
j=23,..N—1,
doy  —My—cloy —on-1) —vV(oy — ov-1) a3
it T+ Jv » 33)
d;;f =w, j=12.,N—1,N, (34)
where:
Ji=Jv = pJeAx, c = GJpAx, v = EJpAx. (35)

Common integration is subject to the following non-
linear system of differential equations:
e for the first experiment: Equations (28) - (30),
e for the second experiment: Equations (31) - (35).

3 The computer simulation results

Computer simulation was conducted for a long
transmission shaft with the following parameters: length of
the shaft . = 6m, diameter D = 0.15m, number of the nodes
of discretization N = 90, G = 8.1-10" N-m, p = 7850 kg/m’,
£=05N-m’ s, Ar =0.0667m, J,, = J, = 20 N-m2

Two identical flywheels, of a moment of inertia J = 20
N-m?, were mounted at the ends of the shaft. To activate
dynamical system, the ends of the shaft twisted to initial
values @(x,t)],—o = 0.2 rad, @(x,1)l,—, =—0.2 rad,
v =0.2, n = 0.1, were calculated based on the comparative
experiments [15].

Two experiments were conducted, in which the type of
boundary conditions was changing. In the first experiment,
mentioned conditions were considered as a Heaviside
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Figure 2 Angle of torsion of the shaft in the point of
discretization No = 9 (0.6 m from the left end of the shaft)
in terms of time (linear variant)

function, whereas, in the second experiment, the conditions
were considered as a Dirac function. From the point of view
of applied electromechanics, description of the experiment
is the following: in the first experiment, the ends of the
shaft were twisted, fixed and left in such a state, in the
second experiment, the ends of the shaft were released
after torsion, which caused angular motion of the shaft.

The shaft both in linear and non-linear cases was analysed

in the research.

Figures 2 and 3 show angle of torsion of the shaft in the
point of discretization No=9 (see Figure 1), in linear (Figure
2) and non-linear (Figure 3) cases, in a function of time.

Therefore, the comparative analysis of descriptions
from Figures 2 and 3 can be conducted:

e frequency of oscillation of the torsion angle function
in the linear case is by about 20% higher in comparison
to non-linear case: fi, =~ 500 Hz, a fouin = 400 Hz.

e time of vanishing of oscillation in the first case is about
0.02 s, and in the second case - about 0.015 s,

e maximal difference of amplitudes for the linear case is
about A@ii ~ 0.11 rad, and - A@™ ~ 0.08 rad for
the non-linear case.

Since the shaft practically does not rotate, one
must ask what physical rules are the background of the
mentioned phenomena? The answer to this questions
should be searched based only on the theory of mechanical
field of analytical mechanics of a system continuum [15].
Mechanical wave moves along transmission of movement
and dispersion forces makes it vanishing. In the linear
case, one does not include non-linear relation between
tensors of deformation and elongation and tensors of
internal dispersion and elongation, which causes a bit
incorrect physical form of the wave motion along the shaft.
Conducting an experiment when the ends of the shaft are
fixed, allows to conclude that the simulation results reflect
the impact of the real non-linear properties of elastic
and dissipative material on the work of the transmission
elements of the complicated drives movement.

Figure 4 shows a transition function of the shaft’s
torsion velocity in the point of discretization No = 9 (0.6m
from the left end of movement transmission). Figures 4 and

Figure 3 Angle of torsion of the shaft in the point of
discretization No = 9 (0.6 m from the left end of the shaft)
in terms of time (non-linear variant)

3 are interrelated, because the time derivative as a function
of angle presents a function of angular velocity. The impact
of the non-linear wave processes in the shaft can also be
observed in this case, which results in various frequencies
between the linear and non-linear variants. Within about
15 ms, the dissipation forces make mechanical wave
practically vanishing. The shaft was twisted, which means
that there is still potential energy in it.

Figure 5 shows the graphs of a function of moment
of elasticity in the shaft in its beginning from the left side
between the points of discretization No 3 - 4 - line 1 and in
its central part: No 45 - 46 - line 2. From the point of view of
applied physics, Figure 5 is of informative character because
it demonstrates the wave processes in a continuum of the
shaft. If in the beginning of the shaft, moment of elasticity
reaches maximal value of amplitude of about 0.9 MN m,
then, in the central part, moment of elasticity in the shaft
is equal to zero. The shock step moments of torsion cause
formation of mechanical wave that moves from both ends
of the shaft towards the centre. The velocity of this wave
is limited. Therefore, in the center of the shaft, moment
of elasticity decreased to zero within 0.5 ms. It is obvious
that oscillations of both functions are in a counterphase.
Within 15 ms, in steady state, moment of elasticity assumes
constant value of about 0.3 MN m. It should be added that
time of stopping the mechanical wave is connected with
time of counterphase of both functions.

Figures 6 - 9 show functional relations of an angle of
torsions and velocity of torsion of the continuum elements
of a shaft as a function of its length (spatial coordinate)
for two time points: 0.2 ms and 2 ms. An analysis of these
functions should be considered comparing Figures 6 and
8 and 7 and 9. Within t = 0.2 ms, one can clearly see how
mechanical wave starts moving along the shaft. The end
parts of the shaft were twisted, whereas, the central part
of the shaft remained immovable. Therefore, there was no
phenomenon of change of discrete angles in a central part
of the shaft (see Figure 1). This means that within t = 0.2
ms, elastic wave would not reach the center of the shaft,
therefore, in the center of the shaft, moment of elasticity
should be practically equal to zero. This conclusion was
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Figure 4 Angular velocity the shaft’s torsion in the point
of discretization No=9 (0.6 m from the left end of the shaft)
in terms of time (non-linear variant)
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Figure 5 Moment of elasticity in a shaft in terms of time: 1
- left end of the shaft (No 3-4), 2 - center of the shaft

(No 45-46)
02 ¢,rad
0.1
0 _
_01 _
-0.27‘ ‘ T L, m
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Figure 6 Angle of torsion of the shaft in v of its length
t=0.2ms

confirmed in Figure 5. It must also be added that torsion of
the ends of the shaft resulted in high values of amplitude of
rotational speed, and there are no such values in the central
part. The situation in the next pair of analysed figures
(Figure 7 and 9) is different. Time increased 10 times here.
The wave reached the center of the shaft and function of the
torsions angle of the shaft’s discrete parts in an argument
of spatial coordinate approaches to linear value; whereas

®,S
400
“c‘
\
-
\
|
O | ..
-400 /
L,m
\ \ T
0 15 3 45 6
Figure 7 Angular velocity of the shaft in terms of its length
t=0.2ms
rad
0.2 ?,
0.1 \
il \\
\
0 T
| T
\\\
-0.1- N N
N\
\\
L, m\
0.2 \ I v \
0 15 3 45 6
Figure 8 Angle of torsion of the shaft in terms of its length
L=2ms
. -1
®,S Pl
80 / N\

80 \/ Lm

\ \ 1
0 15 3 4.5 6

Figure 9 Angular velocity of the shaft in terms of its length
t=2ms

function of velocity of torsion of the shaft approaches to
zero (it should be emphasized that time derivative from an
angle of torsion is rotational speed). Therefore, it is obvious
that in steady state, (about t = 0.02 s) the shaft will be
linearly twisted, (see Figures 2 and 3).

Figures 10 to 12 show spatiotemporal behaviour of
the functions in a three-dimensional system. Figure 10
shows spatiotemporal distribution of function of an angle
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Figure 10 Spatiotemporal distribution of function of the
shaft’s torsion angle in a time range t €[0;0.006]s

6\ L.m
Figure 12 Spatiotemporal distribution of function of the shaft's moment
of elasticity in a time range t €[0;0.006]s

of torsion of the shaft in a time range ¢ €[0;0.006]s; and
Figure 11 shows spatiotemporal distribution of function of
angular velocity of the shaft in a time range ¢ €[0;0.003]
s, and Figure 12 shows spatiotemporal distribution of
function of moment of elasticity in the shaft in a time range
t€[0;0.006]s. Figure 10 should be analysed together
with the Figures 2, 3 and 6, 8. Figure 11 should be analysed
together with Figures 4 and 7, 9. Figure 12 should be
analysed together with Figure 5. What is important is clear
visualization of spatiotemporal movement of mechanical
wave in an isotropic non-linear environment of continuum
of the shaft.

An analysis of subsequent figures (Figures 13 to 20)
refers to the second experiment. Figure 13 shows an angle
of torsion of the shaft’s discretization units in the point No
=9 (0.6m from the left end) in terms of time (linear variant)
and Figure 14 shows an angle of torsion of the shaft in the
point No=9 (0.6m from the left end) in a function of time
(1st variant - linear and 2nd variant- non-linear) in a time
range t €[2.4;2.5]s.

With reference to the first experiment, the shaft
was twisted and its ends were immobilized (boundary
conditions - Heaviside function), in the second experiment,
the shaft was quickly twisted and relieved, which resulted
in the lack of torsion of the shaft; in steady state. That is,
no force affects the shaft within more than 2.5 s, which can
be seen in Figure 13. Amplitude of shaft’s oscillation slowly
vanishes to zero, in contrast with the first experiment
(Figure 3). Figure 14 shows a comparative analysis for
both cases: 1 - linear and 2 - non-linear. During the analysis
of Figures 2 and 3, the causes of propagation of both lines
were explained. In the analysed Figure 14, a very important

R RO

AR SRR

e\

RN

=N\
ERNNNA

N>
N\

Figure 11 Spatiotemporal distribution of function of shaft's
angular velocity in a time range t €[0;0.003]s

moment of the phase shifts of both graphs should be
emphasized. This fact is very important. Analysing the
transmissions of movement in a linear variant, data
concerning amplitude and phase shift are obtained.
Amplitude is not a priority information here, whereas,
a phase shift is a significant information, particularly
with reference to the precision systems (transmissions of
movement with the engines of PMSM and BLDC type [5], in
the special-purpose transport systems), in which accurate
information about location of a rotor and output shaft of
a load mechanism is required.

Figure 15 shows the instantaneous moment of
elasticity in two parts of the shaft: between the points
of discretization No 2 and No 3 (left end of the shaft), as
well as No 45 and No 46 (center of the shaft) in a time
range ¢ €[0;0.05]s. Figure 15 shows that within up to 10
ms, mechanical wave forms very complicated movements
that were analysed above (see Figure 5); whereas within
more than 10 ms, the situation radically changes, different
from the first experiment. Oscillatory fluctuations of both
functions are practically identical with a zero phase of
oscillation. It means that after 10ms, function of moment of
elasticity along the shaft is practically identical. Figure 16
shows a current moment of elasticity in the shaft between
the points of discretization No 45 - 46. The moments of
elasticity in all parts of a long shaft have practically the
same value.

Figures 17 and 18 show the shaft’s torsion angle as
a function of length for t = 2 ms and angular velocity of
the shaft as a function of length for t = 0.2 ms. Figure 17
should be analysed together with Figure 6 and Figure 18
with Figure 10. One may conclude from the comparative
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Figure 13 Angle of torsion of the shaft in the point
No = 9 (0.6m from the left end) in a function of time (linear
variant)
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Figure 14 Angle of torsion of the shaft in the point No = 9
(0.6m from the left end) in a function of time (1 variant -
linear, 2 - non-linear variant)
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Figure 15 Moment of elasticity in the shaft as a function
of time 1 - left end of the shaft (No 2-3), 2 - center of the
shaft (No 45-46)

analysis that the wave processes for both experiments are
visually similar. However, one important moment must be
emphasized. In the first experiment, function of the torsions
angle approaches to linear relation significantly faster in
comparison to the second experiment. This means that
oscillation of the shaft’s ends (second experiment) triggers
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Figure 16 Moment of elasticity in the center of the shaft
as a function of time (No 45 - 46)
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Figure 17 Angle of torsion of the shaft as a function
of length t = 2 ms
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Figure 18 Angular velocity of the shaft as a function
of length t = 0.2 ms

an effect of the elastic wave braking. It shows that it is
necessary to analyse the long transmissions of movement at
the level of analytical mechanics of the continuous systems,
that is, at the level of the field systems of distributed
parameters [1, 2, 17].

Figures 19 and 20 show spatiotemporal distributions
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Figure 19 Spatiotemporal distribution of function of the shaft's torsion
angle in a time range t €[0;0.006]s
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Figure 20 Spatiotemporal distribution of function the

of function of the torsion angle and function of velocity of
this angle in a time range ¢ <[0;0.006]s. An analysis of
Figures 19 and 20, including Figures 10 and 12, confirms
again an effect of braking of mechanical wave in the second
experiment with reference to the first one. Comparative
analysis shows fivefold change of value of an effect of
braking, whereas, the amplitudes of oscillation of analysed
functional relations do not differ significantly.

Mentioned fact gives a basis for conclusion of
usefulness of using the Dirichlet problem, including
boundary conditions using the Heaviside and Dirac function
(here of finite value of impulse) in a non-linear relation
between tensors of deformation and elongation.

4 Conclusions

Use of the modified Hamilton-Ostrogradsky
principle, using extended Lagrangian function to develop
mathematical models of long transmission shafts, including
non-linear relation between tensors of deformation and
elongation, extends the possibilities of analysing oscillatory
unspecified processes in a transmission of movement of
electric drives in the transport tasks.

Conducted experiments showed that in the tasks
connected with an analysis of a complex transmission of
movement that includes long drive shafts as the systems
of distributed parameters, practically all the mechanical
states can be analysed: both transitional and fixed. It gives
higher accuracy of mathematical calculations of dynamic

states of an object in comparison to considering such object

in a multi-body system of lumped parameters, analysed as

a system of lumped parameters.

While solving wave equation of oscillation torsions
of a long shaft, as an element of complex transmission of
movement of electric drives, boundary conditions in the form
of the Heaviside function (constant value of step function)
and Dirac function (finite value of impulse function) can
be applied. On the one hand, such an approach simplifies
using a numerical method of the spatial discretization of the
shaft’s state equations (simple method), on the other hand,
it allows to obtain sufficient information about physical
processes in the complex transmission of movement.

Based on the computer simulation results, it may also
be concluded that:

e comparative analysis of both experiments, connected
with examining a long shaft that includes linear and
non-linear relation between tensors of deformation
and elongation, shows significant difference for both
experiments - concerning various frequencies and
amplitude of oscillation of the torsion angle, as well as
velocity of the shaft’s torsion;

e in the first millisecond of a transitional process of the
shaft’s oscillations, it can be seen that mechanical wave
does not move very quickly along continuum of the
shaft. The movement starts from the ends of the shaft
and moves towards its center. It causes an effect of
counterphase that decreases with elapse of time;

e angular motion of the shaft’s transmission causes an
effect of braking of moving mechanical wave along
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continuum of the shaft in comparison to the case when deviations the shaft’s rotation angle from the real value
the ends of the shaft are inhibited; results in giving a control signal at the wrong moment
e phase shift of the shaft’s rotation angle that emerges in the automated control drives [4, 14];
in both experiments connected with examination of e  results of simulation in the 3D format are of informative
shaft’s movement transmission in a linear and non- value and can be applied to spatiotemporal distributions
linear system is a very important information. Slight of analysed functions.
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