
C54 	 E lec t r ica l  Engineer ing in  T ranspor t 	 O R I G I N A L  R E S E A R C H  A R T I C L E

©  2 0 2 1  U N I V E R S I T Y  O F  Z I L I N A  	 C O M M U N I C A T I O N S  2 3  ( 2 )  C 5 4 - C 6 4

Resume
Mathematical model of transmission of movement of an electric drive system 
that includes long elastic elements, including the non-linear relation between 
tensors of strength and deformation is presented in this article. Mentioned type 
of transmission is applied in the tasks related to special-purpose transport. 
A  method that is based on integral modification of variational Hamilton-
Ostrogradsky principle was applied for the presented model. Results of the 
computer simulation of oscillatory processes in transmission of movement of an 
electromechanical system are presented in the article.
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the assumption, for example, in [4], is not always correct. 
Such analysis is applied to high-power drive systems that 
often work in hard, diverse conditions (special-purpose 
transport tasks - cranes, locomotives) [3, 13-14]. In such 
systems, the situations may emerge\ in which the linear 
relation between mentioned tensors is disrupted [15]. Then, 
the problem emerges how to include mentioned non-linear 
physical processes in an equation of the shaft. An attempt 
to solve this problem was made, for example, in the work 
[15]. Therefore, there is a  need to include the non-linear 
mechanical processes using the non-linear elements in an 
equation of the shaft [15-16]. Another serious problem must 
be taken into account. If normal wave equation of torsional 
oscillations of a long shaft of linear distributed parameters 
has stable analytical solutions (e.g. Fourier method [17]), 
then in the case of the non-linear relations, analytical 
approach can be used only in some cases. To find a function 
of continuum of the shaft, numerical methods must be 
applied to solve boundary-value and mixed problems [5, 
11-13].

Based on interdisciplinary modified Hamilton-
Ostrogradsky method by extending Lagrangian function [5, 
18-20], mathematical model of transmission of movement 
of a  drive system is presented in the article. The goal of 
the article was mathematical modelling of unspecified 
processes in a  system of transmission of movement of 
electric drives that includes non-linear elastic elements of 

1	 Introduction

Mathematical modelling of unspecified processes in 
the dynamical systems is one of the most topical tasks of 
an analysis of complicated technical objects. The electric 
drive systems that are used in special-purpose transport 
systems have become a part of such process of modelling. 
These systems may have long shafts, analysed as long 
elastic elements of distributed mechanical parameters [1-2]. 
Modelling and analysis of such elements makes it necessary 
to map a model in a prototypical system. It is particularly 
important in the event that concealed movements are 
included what extends a  model and complicates output 
equations of the state of a system [3-4]. Using the modelling 
of complex system states allows to analyse it more precisely 
and to resign from developing a prototype of a system [5]. 
Regardless of the type of the analyzed system, computer 
simulation carried out based on the mathematical apparatus 
allows to determine the parameters affecting the operation 
of the system [6-7]. It also allows for analysis of different 
event scenarios [8-9]. An example of use of simulation to 
analyze a  complex special-purpose transport system is 
presented in the work [10].

An analysis of transmission of the electric drives’ 
movement, including long shafts of linear relation between 
tensors of strength and deformation was presented in the 
articles [5, 11-12]. In the real tasks of applied mechanics, 
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21] should be calculated; therefore, variation of internal 
functional, see Equation (1), with subsequent comparison 
to zero is searched for. Then, it looks in the following way 
[16, 21]:

I T P D dl 0l l l l

l

d d U= - + - =u^ h# .	 (4)

In order to find variation, the following procedures are 
applied: Gauss-Ostrogradsky theorem, rule of integration by 
parts, as well as assumption that the order of differentiation 
can be changed, because these procedures are independent 
[18-19]. Therefore, mechanical system may be analysed 
as a  system of infinite degrees of freedom, which is 
a  counterbalance to the systems of lumped parameters, 
in which the number of degrees of freedom is always 
determined [1, 2, 5, 15, 19].

An equation of extremals of this functional is the 
so-called Euler-Poisson equation [16]:
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In such a case, for the systems of distributed parameters, 
adding specific coordinates is not possible. Therefore, the 
so-called function of generalized coordinates is added q(x,t) 
and its generalized velocity q

t
(x,t). In the case of a  long 

shaft , ,q x t x t/ {^ ^h h  - function of the shaft rotation angle 
and , ,q x t x tt ~=^ ^h h  - function of rotational speed [5].

Therefore, system of elastic shaft can be presented 
using a function of two variables (x,t), x - spatial coordinate 
along continuum of the shaft and t - time coordinate.

Elements of the linear densities of extended Lagrangian 
function are presented [5, 15]:
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where: 
t  - density of the shaft’s material, 
J

P
 - polar moment of inertia of a  connecting element, 
G T{^ h  - shear modulus that depends on value of torsion 
between the shaft’s elements, 
Tp {^ h  - coefficients of internal dispersion in the shaft 

that also depend on value of torsion between elements 
of the shaft.

a long shaft, analysed as a system of distributed mechanical 
parameters. To solve equations in the article, the elements 
of applied mathematics were also presented.

2	 Mathematical model of elastic long shaft 	
of distributed parameters

To develop a  mathematical model of transmission of 
movement, modified variation method was applied, which 
is based on modification of the Hamilton-Ostrogradsky 
principle [5], by extending Lagrangian function with two 
elements [16, 21]. The first element includes energy of 
dissipation forces and the second one - energy of external 
forces of non-potential character. Similar approach was 
suggested in an article [18], in which two mentioned 
additional elements were added formally to a conservative 
Lagrangian, whereas, in another article [5], adding these 
elements was justified mathematically. In addition, a method 
presented in [5] allows to analyse dynamical systems of not 
only lumped parameters, but also to analyse unspecified 
processes in the complicated dynamical systems of both 
lumped [22] and distributed parameters [1, 2]. 

Extended action functional according to Hamilton-
Ostrogradsky is the following [5, 23]:
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where: 
S  - extended action functional according to Hamilton-
Ostrogradsky, 
I - internal energy functional [5, 16, 21], 
L* - modified Lagrangian function [5, 19], 
L

l
 - linear density of modified Lagrangian function [5]. 

Extended Lagrangian function and its linear density are 
the following:

* * * * * ,
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respectively, where: 
T*(Tu *) - kinetic energy (coenergy), 
P* - conservative energy, 
F* - dissipation energy, 
D* - energy of external forces of non-potential character. 

Linear densities of mentioned functions are marked 
by subscript l [5].

Since the model of a  shaft is analysed as a  system 
of only distributed parameters, then the modified action 
functional (S), based on Equation (1) can be written in the 
following form:

S T P D dldtl l l l

lt

t

1

2

U= - + -u^ h## ,	 (3)

where: 
T

l
, P

l
, F

l
, D

l
 - appropriate linear densities of energy 

functions.
To obtain an equation of movement of the shaft, an 

equation of the extremals of a functional - Equation (3) [18, 
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where coefficients are written in the following way [15]:
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here: N -natural number. 
Mentioned coefficients are calculated based on 

experimental data, including Equation (17), [15]. Assuming 
additionally that coefficients G T{^ h and Tp {^ h  do  not 
depend on a coordinate x, an equation of a long shaft can 
be written in the following way:
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or presented in the form:
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Therefore, consider the general case of a  long shaft, 
as an element of transmission of movement of electric 
drives. The shaft is connected with a driving motor and load 
mechanism, Figure 1.

The following marks were used in Figure 1: MEM
- electromagnetic moment of a  driving motor, MN - load 
moment of a  drive, ,J JEM N - moments of inertia of an 
engine rotor and load system, respectively, x - spatial 
coordinate, N - the number of the nodes of discretization 
of Equation (19), xT - step of discretization of spatial 
derivatives.

The boundary conditions for Equation (19) are based 
on equality of electromagnetic moments (or load) and 
elasticity and dissipation in the ends of the shaft in 
accordance with d’Alembert principle), [5, 17]
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Assuming that , ,q qt/ /{ ~  modified Lagrangian 
function will be the following:
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Equation (5) is simplified to the following form:
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Giving an Equation (9) to Equation (11), changing the 
order of differentiation (derivatives from the functions of 
generalized coordinates are determined and uninterrupted), 
as well as applying derivative theorem from an integral 
beyond its upper boundary, one can write:
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Summing up Equations (12 - 14), including relations:
,q qt/ /{ ~ , finally equation of the shaft of non-linear 

elastic and dissipative elements are obtained:
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In a theory of non-linear applied mechanics, following 
assumptions are widely applied [15, 17, 24]:
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Figure 1 Diagram of a long shaft of transmission of movement of an electric drive 
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For the boundary conditions of the second type, see 
Equation (27), system of equations is the following:
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where:

, ,J J J x c GJ x J xN P P P1 T T Tt o p= = = = .	 (35)

Common integration is subject to the following non-
linear system of differential equations: 
•	 for the first experiment: Equations (28) - (30),
•	 for the second experiment: Equations (31) - (35).

3	 The computer simulation results

Computer simulation was conducted for a  long 
transmission shaft with the following parameters: length of 
the shaft L = 6 m, diameter D = 0.15 m, number of the nodes 
of discretization N = 90, G = 8.1.1010 N.m, r = 7850 kg/m3, 

. N m s0 5 2$ $p= , Dx = 0.0667 m, J
EM

 = J
N 

= 20 N.m2.
Two identical flywheels, of a moment of inertia J = 20 

N.m2, were mounted at the ends of the shaft. To activate 
dynamical system, the ends of the shaft twisted to initial 
values , .x t 0 2x 0{ ==^ h  rad, , .x t 0 2x L{ =-=^ h  rad, 
n = 0.2, µ = 0.1, were calculated based on the comparative 
experiments [15].

Two experiments were conducted, in which the type of 
boundary conditions was changing. In the first experiment, 
mentioned conditions were considered as a  Heaviside 

In order to simplify it, it was assumed that in the 
ends of the shaft, external moments are equal to specific 
moments of elasticity. Therefore, the following equations 
can be written:
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where, see Figure 1:

, N N N1 2 1 1T T{ { { { { {= - = - - .	 (23)

Assuming that /x L 2T = , boundary conditions can 
be written in the following way (angle of torsions of 
transmission):
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Due to the fact that the shaft is inhibited, use of 
boundary conditions in Equations (24) and (25) to examine 
non-linear shaft is not sufficient. Therefore, two types of 
boundary conditions should be used. In the first case, the 
conditions are analysed using the Heaviside function [17]:

. a t a t11 $=^ ^h h 	 (26)

From the point of view of applied physics, the use 
of such conditions means that the shaft was twisted and 
stabilized in such a  state. Only mechanical wave moves 
towards the shaft, whereas, the ends of the shaft are 
immovable, which, with reference to applied mechanics, 
does not provide sufficient information about dynamics of 
the shaft.

In the second case, boundary conditions are analysed 
as a Dirac function: 

a t
dt

da t
a
dt
d t

a t
1

2
1 d= = =^ ^ ^ ^h h h h .	 (27)

Equation (27) should be understood as an impulse 
of finite value of amplitude a. From the point of view of 
applied physics, use of the boundary conditions in Equation 
(27) means that the shaft was twisted in t t 0= - , and 
in a  time moment t t 0= +  - the ends of the shaft were 
quickly relieved. Therefore, not only that the mechanical 
wave is moving in the shaft, just like in the previous cause, 
but the elements of the shaft also rotate. It is interesting 
from the point of view of applied mechanics, providing 
information about dynamics of movement.

To solve Equation (19), simple method was applied [5].
For the conditions of the first type, see Equation (26), 

discrete system of normal non-linear differential equations 
is the following:

, , ,a a0 0N N1 1{ ~ { ~= = =- = ,	 (28)
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3 are interrelated, because the time derivative as a function 
of angle presents a function of angular velocity. The impact 
of the non-linear wave processes in the shaft can also be 
observed in this case, which results in various frequencies 
between the linear and  non-linear variants. Within about 
15 ms, the dissipation forces make mechanical wave 
practically vanishing. The shaft was twisted, which means 
that there is still potential energy in it.

Figure 5 shows the graphs of a  function of moment 
of elasticity in the shaft in its beginning from the left side 
between the points of discretization No 3 - 4 - line 1 and in 
its central part: No 45 - 46 - line 2. From the point of view of 
applied physics, Figure 5 is of informative character because 
it demonstrates the wave processes in a continuum of the 
shaft. If in the beginning of the shaft, moment of elasticity 
reaches maximal value of amplitude of about 0.9  MN m, 
then, in the central part, moment of elasticity in the shaft 
is equal to zero. The shock step moments of torsion cause 
formation of mechanical wave that moves from both ends 
of the shaft towards the centre. The velocity of this wave 
is limited. Therefore, in the center of the shaft, moment 
of elasticity decreased to zero within 0.5 ms. It is obvious 
that oscillations of both functions are in a  counterphase. 
Within 15 ms, in steady state, moment of elasticity assumes 
constant value of about 0.3 MN m. It should be added that 
time of stopping the mechanical wave is connected with 
time of counterphase of both functions.

Figures 6 - 9 show functional relations of an angle of 
torsions and velocity of torsion of the continuum elements 
of a  shaft as a  function of its length (spatial coordinate) 
for two time points: 0.2 ms and 2 ms. An analysis of these 
functions should be considered comparing Figures 6 and 
8 and 7 and 9. Within t = 0.2 ms, one can clearly see how 
mechanical wave starts moving along the shaft. The end 
parts of the shaft were twisted, whereas, the central part 
of the shaft remained immovable. Therefore, there was no 
phenomenon of change of discrete angles in a central part 
of the shaft (see Figure 1). This means that within t = 0.2 
ms, elastic wave would not reach the center of the shaft, 
therefore, in the center of the shaft, moment of elasticity 
should be practically equal to zero. This conclusion was 

function, whereas, in the second experiment, the conditions 
were considered as a Dirac function. From the point of view 
of applied electromechanics, description of the experiment 
is the following: in the first experiment, the ends of the 
shaft were twisted, fixed and  left in such a  state, in the 
second experiment, the ends of the shaft were released 
after torsion, which caused angular motion of the shaft. 
The shaft both in linear and non-linear cases was analysed 
in the research.

Figures 2 and 3 show angle of torsion of the shaft in the 
point of discretization No=9 (see Figure 1), in linear (Figure 
2) and non-linear (Figure 3) cases, in a function of time.

Therefore, the comparative analysis of descriptions 
from Figures 2 and 3 can be conducted:
•	 frequency of oscillation  of the torsion angle function 

in the linear case is by about 20% higher in comparison 
to non-linear case: f 500lin . Hz, a  f 400nonlin . Hz. 

•	 time of vanishing of oscillation in the first case is about 
0.02 s, and in the second case - about 0.015 s,

•	 maximal difference of amplitudes for the linear case is 
about .0 11max

linT .{  rad, and -  .0 08max
nonlinT .{  rad for 

the non-linear case.
Since the shaft practically does not rotate, one 

must ask what physical rules are the background of the 
mentioned phenomena? The answer to this questions 
should be searched based only on the theory of mechanical 
field of analytical mechanics of a  system continuum [15]. 
Mechanical wave moves along transmission of movement 
and dispersion forces makes it vanishing. In the linear 
case, one does not include non-linear relation between 
tensors of deformation and elongation and tensors of 
internal dispersion and elongation, which causes a  bit 
incorrect physical form of the wave motion along the shaft. 
Conducting an experiment when the ends of the shaft are 
fixed, allows to conclude that the simulation results reflect 
the impact of the real non-linear properties of elastic 
and dissipative material on the work of the transmission 
elements of the complicated drives movement.

Figure 4 shows a  transition function of the shaft’s 
torsion velocity in the point of discretization No = 9 (0.6 m 
from the left end of movement transmission). Figures 4 and 

Figure 2 Angle of torsion of the shaft in the point of 
discretization No = 9 (0.6 m from the left end of the shaft)  

in terms of time (linear variant)

Figure 3 Angle of torsion of the shaft in the point of 
discretization No = 9 (0.6 m from the left end of the shaft)  

in terms of time (non-linear variant)
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function of velocity of torsion of the shaft approaches to 
zero (it should be emphasized that time derivative from an 
angle of torsion is rotational speed). Therefore, it is obvious 
that in steady state, (about t = 0.02 s) the shaft will be 
linearly twisted, (see Figures 2 and 3).

Figures 10 to 12 show spatiotemporal behaviour of 
the functions in a  three-dimensional system. Figure 10 
shows spatiotemporal distribution of function of an angle 

confirmed in Figure 5. It must also be added that torsion of 
the ends of the shaft resulted in high values of amplitude of 
rotational speed, and there are no such values in the central 
part. The situation in the next pair of analysed figures 
(Figure 7 and 9) is different. Time increased 10 times here. 
The wave reached the center of the shaft and function of the 
torsions angle of the shaft’s discrete parts in an argument 
of spatial coordinate approaches to linear value; whereas 

Figure 4 Angular velocity the shaft’s torsion in the point  
of discretization No=9 (0.6 m from the left end of the shaft) 

in terms of time (non-linear variant)

Figure 5 Moment of elasticity in a shaft in terms of time: 1 
- left end of the shaft (No 3-4), 2 - center of the shaft  

(No 45-46)

Figure 6 Angle of torsion of the shaft in v of its length 
 t = 0.2 ms

Figure 7 Angular velocity of the shaft in terms of its length 
t = 0.2 ms

Figure 8 Angle of torsion of the shaft in terms of its length 
t = 2 ms

Figure 9 Angular velocity of the shaft in terms of its length 
t = 2 ms



C60 	 C H A B A N ,  P E R Z Y Ń S K I

C O M M U N I C A T I O N S    2 / 2 0 2 1 	 V O L U M E  2 3

moment of the phase shifts of both graphs should be 
emphasized. This fact is very important. Analysing the 
transmissions of movement in a  linear variant, data 
concerning amplitude and phase shift are obtained. 
Amplitude is not a  priority information here, whereas, 
a  phase shift is a  significant information, particularly 
with reference to the precision systems (transmissions of 
movement with the engines of PMSM and BLDC type [5], in 
the special-purpose transport systems), in which accurate 
information about location of a  rotor and output shaft of 
a load mechanism is required.

Figure 15 shows the instantaneous moment of 
elasticity in two parts of the shaft: between the points 
of discretization No 2 and No 3 (left end of the shaft), as 
well as No 45 and No 46 (center of the shaft) in a  time 
range ; .t 0 0 05! 6 @ s. Figure 15 shows that within up to 10 
ms, mechanical wave forms very complicated movements 
that were analysed above (see Figure 5); whereas within 
more than 10 ms, the situation radically changes, different 
from the first experiment. Oscillatory fluctuations of both 
functions are practically identical with a  zero phase of 
oscillation. It means that after 10ms, function of moment of 
elasticity along the shaft is practically identical. Figure 16 
shows a current moment of elasticity in the shaft between 
the points of discretization No 45 - 46. The moments of 
elasticity in all parts of a  long shaft have practically the 
same value.

Figures 17 and 18 show the shaft’s torsion angle as 
a  function of length for t = 2 ms and angular velocity of 
the shaft as a  function of length for t = 0.2 ms. Figure 17 
should be analysed together with Figure 6 and Figure 18 
with Figure 10. One may conclude from the comparative 

of torsion of the shaft in a time range ; .t 0 0 006! 6 @ s; and 
Figure 11 shows spatiotemporal distribution of function of 
angular velocity of the shaft in a time range ; .t 0 0 003! 6 @
s, and Figure 12 shows spatiotemporal distribution of 
function of moment of elasticity in the shaft in a time range 

; .t 0 0 006! 6 @ s. Figure 10 should be analysed together 
with the Figures 2, 3 and 6, 8. Figure 11 should be analysed 
together with Figures 4 and 7, 9. Figure 12 should be 
analysed together with Figure 5. What is important is clear 
visualization of spatiotemporal movement of mechanical 
wave in an isotropic non-linear environment of continuum 
of the shaft.

An analysis of subsequent figures (Figures 13 to 20) 
refers to the second experiment. Figure 13 shows an angle 
of torsion of the shaft’s discretization units in the point No 
= 9 (0.6 m from the left end) in terms of time (linear variant) 
and Figure 14 shows an angle of torsion of the shaft in the 
point No=9 (0.6 m from the left end) in a  function of time 
(1st variant - linear and 2nd variant- non-linear) in a  time 
range . ; .t 2 4 2 5! 6 @ s.

With reference to the first experiment, the shaft 
was twisted and its ends were immobilized (boundary 
conditions - Heaviside function), in the second experiment, 
the shaft was quickly twisted and relieved, which resulted 
in the lack of torsion of the shaft; in steady state. That is, 
no force affects the shaft within more than 2.5 s, which can 
be seen in Figure 13. Amplitude of shaft’s oscillation slowly 
vanishes to zero, in contrast with the first experiment 
(Figure 3). Figure 14 shows a  comparative analysis for 
both cases: 1 - linear and 2 - non-linear. During the analysis 
of Figures 2 and 3, the causes of propagation of both lines 
were explained. In the analysed Figure 14, a very important 

Figure 10 Spatiotemporal distribution of function of the 
shaft’s torsion angle in a time range ; .t 0 0 006! 6 @ s

Figure 11 Spatiotemporal distribution of function of shaft’s 
angular velocity in a time range ; .t 0 0 003! 6 @ s

Figure 12 Spatiotemporal distribution of function of the shaft’s moment  
of elasticity in a time range ; .t 0 0 006! 6 @ s
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an effect of the elastic wave braking. It shows that it is 
necessary to analyse the long transmissions of movement at 
the level of analytical mechanics of the continuous systems, 
that is, at the level of the field systems of distributed 
parameters [1, 2, 17].

Figures 19 and 20 show spatiotemporal distributions 

analysis that the wave processes for both experiments are 
visually similar. However, one important moment must be 
emphasized. In the first experiment, function of the torsions 
angle approaches to linear relation significantly faster in 
comparison to the  second experiment. This means that 
oscillation of the shaft’s ends (second experiment) triggers 

Figure 13 Angle of torsion of the shaft in the point  
No = 9 (0.6 m from the left end) in a function of time (linear 

variant)

Figure 14 Angle of torsion of the shaft in the point No = 9 
(0.6 m from the left end) in a function of time (1 variant - 

linear, 2 - non-linear variant)

Figure 15 Moment of elasticity in the shaft as a function  
of time 1 - left end of the shaft (No 2-3), 2 - center of the 

shaft (No 45-46)

Figure 16 Moment of elasticity in the center of the shaft  
as a function of time (No 45 - 46)

Figure 17 Angle of torsion of the shaft as a function  
of length t = 2 ms

Figure 18 Angular velocity of the shaft as a function  
of length t = 0.2 ms
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states of an object in comparison to considering such object 
in a multi-body system of lumped parameters, analysed as 
a system of lumped parameters.

While solving wave equation of oscillation torsions 
of a  long shaft, as an element of complex transmission of 
movement of electric drives, boundary conditions in the form 
of the Heaviside function (constant value of step function) 
and Dirac function (finite value of impulse function) can 
be applied. On the one hand, such an approach simplifies 
using a numerical method of the spatial discretization of the 
shaft’s state equations (simple method), on the other hand, 
it allows to obtain sufficient information about physical 
processes in the complex transmission of movement.

Based on the computer simulation results, it may also 
be concluded that:
•	 comparative analysis of both experiments, connected 

with examining a  long shaft that includes linear and 
non-linear relation between tensors of deformation 
and elongation, shows significant difference for both 
experiments - concerning various frequencies and 
amplitude of oscillation of the torsion angle, as well as 
velocity of the shaft’s torsion;

•	 in the first millisecond of a transitional process of the 
shaft’s oscillations, it can be seen that mechanical wave 
does not move very quickly along continuum of the 
shaft. The movement starts from the ends of the shaft 
and moves towards its center. It causes an effect of 
counterphase that decreases with elapse of time;

•	 angular motion of the shaft’s transmission causes an 
effect of braking of moving mechanical wave along 

of function of the torsion angle and function of velocity of 
this angle in a  time range ; .t 0 0 006! 6 @ s. An analysis of 
Figures 19 and 20, including Figures 10 and 12, confirms 
again an effect of braking of mechanical wave in the second 
experiment with reference to the first one. Comparative 
analysis shows fivefold change of value of an effect of 
braking, whereas, the amplitudes of oscillation of analysed 
functional relations do not differ significantly.

Mentioned fact gives a  basis for conclusion of 
usefulness of using the Dirichlet problem, including 
boundary conditions using the Heaviside and Dirac function 
(here of finite value of impulse) in a  non-linear relation 
between tensors of deformation and elongation.

4	 Conclusions

Use of the modified Hamilton-Ostrogradsky 
principle, using extended Lagrangian function to develop 
mathematical models of long transmission shafts, including 
non-linear relation between tensors of deformation and 
elongation, extends the possibilities of analysing oscillatory 
unspecified processes in  a  transmission of movement of 
electric drives in the transport tasks.

Conducted experiments showed that in the tasks 
connected with an analysis of a  complex transmission of 
movement that includes long drive shafts as the systems 
of distributed parameters, practically all the mechanical 
states can be analysed: both transitional and fixed. It gives 
higher accuracy of mathematical calculations of dynamic 

Figure 19 Spatiotemporal distribution of function of the shaft’s torsion  
angle in a time range ; .t 0 0 006! 6 @ s

Figure 20 Spatiotemporal distribution of function the 



M A T H E M A T I C A L  M O D E L L I N G  O F  O S C I L L A T O R Y  P R O C E S S E S  I N  T R A N S M I S S I O N  O F  M O V E M E N T . . . 	  C63

V O L U M E  2 3 	 C O M M U N I C A T I O N S    2 / 2 0 2 1

deviations the shaft’s rotation angle from the real value 
results in giving a control signal at the wrong moment 
in the automated control drives [4, 14];

•	 results of simulation in the 3D format are of informative 
value and can be applied to spatiotemporal distributions 
of analysed functions.

continuum of the shaft in comparison to the case when 
the ends of the shaft are inhibited;

•	 phase shift of the shaft’s rotation angle that emerges 
in both experiments connected with examination of 
shaft’s movement transmission in a  linear and non-
linear system is a  very important information. Slight 
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