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Resume

The objective of this study was to assess the effect of selected operational
and technical factors on downtime of vehicles. The sample consisted of buses
from a municipal transport company (Poland). Estimation of parameters
of a linear regression model was performed. Month of failure (downtime
event) and its type were used as predictors. Failures were divided into three
categories: events related to the company’s operations, including vehicle
failures (1) and other (organizational) problems (2), as well as failures caused
by external factors unrelated to the operations of the transport company (3).
The downtime was found to be significantly associated with failure type
and month of failure. A linear regression model of downtime with a reduced
number of impact factors, taking into account two main failure types and
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two main periods of their occurrence during the year, was developed.
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1 Introduction

In public transport systems, vehicle failures and
organizational shortcomings often substantially increase
passenger waiting time. In this paper, disablement
of a vehicle caused by technical or operational factors
has been referred to with the umbrella term “failure”.
Vehicle failures are of concern to both drivers and fleet
managers. In public transport systems, randomness of
bus departure times and travel times has an influence on
the quality of transport services [1]. In a situation when
compliance with the timetable is the major requirement,
the real travel time in the whole transport system
is adjusted to a vehicle with the lowest operational
speed. In the literature, this phenomenon is known as
“pbunching”. Bunching forces passengers to arrive early
at stations and to budget long travel time [2-5].

The literature describes several corrective strategies
to reduce bus bunching. Hickman has proposed
a stochastic model of vehicle operations based on recursive
equations for expected values of headways and bus loads
[6]. His strategy of improving transport services consists
in holding operating buses along the service line, in order
to regulate the system on an ongoing basis.

Daganzo and other authors have developed a mixed
strategy in which passenger boarding and alighting

can be limited to improve the regularity of headways
[8-10]. Berrebi et. al. have studied the practical effects
of implementation of these corrective strategies. They
demonstrated that the “bus holding” system reduced
bunching, thus also decreasing average passenger
waiting time [2]. Adamski and Turnau have presented
a transport system control strategy in which buses
were sent at specific times to critical bus stops with
high numbers of passengers [11]. However, it is worth
mentioning that the “bus holding” method also had
negative effects, such as disturbances in traffic flow and
an increase in average waiting time [1, 12-18].

Animportant component ofthe “bus holding” strategy
is prediction of fleet availability. One prediction method
involves simulation of readiness based on a regression
model developed with use of the retrospective data.

In this paper, a linear regression model is proposed,
which links the bus downtime (not-ready time) with the
month of the year in which a bus was stationary and
type of downtime. A regression analysis of downtime was
performed based on data obtained from the municipal
transport company in Lublin, Poland. The main objective
was to develop a regression model with a reduced
number of factors, which could be used to effectively
predict bus downtime and ensure continuity of system
operation.
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Table 1 Descriptive statistics of the investigated buses

indicator

vehicle

average mileage

median mileage per 1

make vehicle type ngmber of per 1 vehicle vehicle standard deviation
objects (pcs) M (km) M, (km) S, (km)
1 single-decker 53 6041 6473 1699
2 single-decker 20 4414 5511 2671
3 articulated bus 27 4495 4519 926
4 articulated bus 28 4313 4972 2197
5 single-decker 22 3668 3523 1171
6 articulated bus 10 5966 6226 1448
7 single-decker 20 5062 5301 1507
8 articulated bus 30 5500 5593 873
9 single-decker 18 5014 5774 2504

2 Material and methods

Twenty one buses (8 different makes and models)
were studied. The vehicles were between 10 and 16
years old. Observations were conducted in standard
public transport conditions over 2 years of operation
(2018-2019). The dates and times of bus arrival to and
departure from the depot and the vehicle downtime
were registered. Source documentation included the
company’s daily internal reports on the operational
status of the fleet. The basic descriptive statistics of the
buses are presented in Table 1.

The buses serviced standard routes in municipal
traffic. The average monthly mileage was approximately
4637 km. The lowest average monthly mileage of 4313 km
was recorded for a bus make 5 (Standard Deviation-SD
1711km) and the highest mileage of 6041km for a bus
make 2 (SD 1699 km).

Fleet downtime data for the years 2018-2019 were
analysed. The impact of two factors, month of failure
and failure type, on the dependent variable (downtime)
was considered.

Month of failure was analysed repeatedly in each
year of observation and was thus an indicator of
seasonality related to seasonal changes in weather
and vehicle loads (number of passengers) over the
year. In winter, many downtime events were caused by
door freezing, failures of driver’s cabin and passenger
compartment heating and power outages. During
the summertime, downtime was mainly due to high
temperatures, i.e. engine overheating and lack of air
conditioning in the vehicle.

The second factor that has been analysed was
the failure type. Three types of most frequent failures
(downtime events) were considered. Type Al were
failures related to a vehicle damage (e.g. broken/jammed
door lock, fluid leakage, broken brakes, no ignition,
engine overheating). Type A2 were organizational
failures and other technical problems (e.g. a damaged
wind shield, mirror, tyre). Some of these failures were
related to weather conditions and some to the general

status of the vehicles. Unfortunately, the data were not
detailed enough to allow to discriminate which failure
was caused by which factor. Type B were failures related
to events outside the company’s control (e.g. collision
with another vehicle, freezing of the pneumatic system,
vehicle trapped in the snow, a blocked route, an incident
inside the vehicle).

3 Results

Downtime observation results were divided into
“monthly” groups. The number of all the failures
recorded in 2018-2019, broken down by month, is given
in Table 2. Downtime data for the years 2018-2019, also
broken down by month, are shown in Table 3. Monthly
downtime duration is presented in Table 2. Figure 1
shows a box plot of downtime per month. As seen in
the graph, median values of downtime are different
for different months. The highest mean values were
recorded in January, September, October and November.
It is worth stressing that the number of failures is
different for each month (Table 3). The largest number
of failures occurred in March, however, the mean and
median downtime values for this month were the lowest
(Table 2), which means that the failures were short-term
ones.

Significance of differences in downtime between
months was assessed using the non-parametric Kruskal-
Wallis test.

The Chi-squared statistic was y® = 243.98 and
the p-value < p <0.0001, which indicated that, at
the significance level o = 0.05, the null hypothesis of
equality of means was rejected. This demonstrates
that there were significant differences between at
least two monthly downtime groups.

Another factor that was analysed was the type of
failure. The observed failures were classified as one
of the three categories (types), designated here as
Al, A2, B. The largest group were type A2 failures,
which occurred 1338 times in the whole study period.
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Figure 1 The box plot of downtime in each month

Table 2 Descriptive statistics of bus downtime distribution in each month

month mefiian mean Me (minutes) standard. deviation
M (minutes) S, (minutes)

January 65 954 84.8

February 37 45.8 43.2
March 39 47.7 40.7
April 41 48.7 52.4
May 38 43.3 35.3
June 44 49.2 36.9
July 50 51.8 39.5

August 55.5 86.7 95.8
September 65 104 110.

October 62 101 106.
November 61 107 118.
December 48 53.4 51.7

Table 3 Number of failures in each month in 2018-2019
month January February March April May June
n‘fgﬁﬁizs"f 332 339 369 305 227 228
month July August September October November December
ngﬁﬁig"f 179 178 255 247 266 195

The number of type Al failures was similar (1136
events). The lowest number of failures were the B type
events (596 events). Descriptive statistics of downtime
for each type of failure is presented in Table 4 and
a box-plot of downtime versus failure type is shown
in Figure 2.

As Figure 2 shows, downtime duration differed

significantly depending on the type of failure. The
longest downtimes (though the smallest in number)
were caused by the B type failures, which were outside
the company’s control. The shortest stoppages were
related to Al type events associated with repair of
subsystems (mechanisms) or scheduled maintenance of
vehicles.
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Figure 2 The box plot of bus downtime versus type of failure

Table 4 Descriptive statistics of downtime distribution for different types of failures

type of failure median (minutes) mean standard min. (minutes) max. (minutes)
(minutes) deviation
(minutes)
Al 10 23.8 26 1 119
A2 63 64.1 271 10 132
B 134 167 124. 23 399

4 Linear regression model of downtime

Based on the bus downtime data discussed in
Section 3, a multi-regression model describing the
relationship of downtime duration with month and type
of failure was developed. The general formula for the
linear regression model is as follows:

y= fo+Bx +fx,+..+B.x, +e, (1)

where y is dependent variable, f, is intercept, x, are
independent variables, §, are model parameters, ¢ is
random parameter.

The regression coefficient , describes by how much
the average value of the independent variable y will
change if the value of the independent variable x,
changes by a unit, all the other independent variables
being constant. The random component in the model
reflects an incomplete fit to empirical data.

Due to the fact that the independent variables
had a qualitative character and formed closed sets (24
months and 3 types of failures), they had to be recoded
as binary variables. Then, each variable took either the
value of 1 - when the phenomenon does occur or 0 - when
it does not occur. Parameters of the regression function
were estimated using the least-squares method after
initial elimination of a selected variable in each of the

studied category. Variables with extreme average values
were selected: type Al failure and the month of April. In
this way, the effect of single-signedness of the remaining
parameters with regards to the level of the omitted
variable was obtained.

A statistical analysis was conducted to determine
the structure of the linear regression model with binary
variables, which resulted from the quantitative nature
of the dependent variable and the qualitative character
of the independent variables. The estimated model
parameters are given in Table 5.

Four of the estimated parameters were statistically
insignificant. The AIC (Akaike Information Criterion) =
34011 and corrected R? = 48% indicate that the model
does not fully explain the observed phenomena. This
is also indicated by the residual distribution, which is
different from the normal distribution (Lilliefors test
statistics D = 0.088 and p-value < 0.001). Additionally,
an analysis of the autocorrelation function (Figure 3)
demonstrated significant dependencies not described by
the model. This means that bus downtime is dependent
on factors which have not been included in the model.

The regression equation is given by:
y= 18.4+36.1 *A2 + B*137.7 +29.6*January - 216
*February -13.6*March + 3.3*May + 1.8%July -3.8
*June + 23.1*August + 31.6%*September + 30.0
*October + 32.1*November + 2.5%December+ ¢. (2)
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Table 5 Parameters of the linear regression model and evaluation of their significance

parameter estimate pk std. err or S(5,) t value p-value
B, 18.4 3.379 5.432 < 0.001
failure A2 36.1 2.300 15.672 < 0.001
failure B 137.7 2.907 47.390 < 0.001
January 29.6 4.472 6.621 < 0.001
February -21.6 4.453 -4.850 < 0.001
March -13.6 4.357 -3.112 0.002
May 3.3 4.933 0.668 0.504
July 1.8 5.338 0.336 0.737
June -3.8 4.930 -0.761 0.447
August 23.1 5.341 4.320 < 0.001
September 31.6 4.806 6.585 <0.001
October 30.0 4.843 6.184 < 0.001
November 32.1 4.755 6.759 < 0.001
December 2.5 5.182 0.474 0.636

where Std. Err or S (§,) explains the accuracy of the parameter estimate (5,). Indicates by how many units the assessment

value (estimated) differs from the actual value of parameter f,.

ACF
02 03

0.1

0.0

Lag

Figure 3 Autocorrelation function of model residual

The quality of fit of the regression model was
evaluated using AIC (Figure 3). The value of AIC was
found from the following equation:
AIC=-21In L +2k, (3)
where £ is the number of model parameters and L is the
reliability function.

In accordance with the objective of the study, in the
next stage of the calculations, the model was simplified.
To limit the number of predictors, it was proposed that
months with similar regression coefficients should be
aggregated. Statistically similar months were grouped
with Pairwise Wilcoxon Rank Sum Test, which is a non-
parametric test with multi-testing correction\ used to
compare pairs in groups. The null hypothesis for Pairwise
Wilcoxon Rank Sum Test is that there are no differences
between distributions, while the alternative hypothesis

is that the differences are statistically significant. The
test statistic is given by:

W= Z?V,l[sgn(xz—xl)le-], (4)
where sgn is the sign function, R; = Z’;Rly, Rij is the
rank of observation, x, x, are study groups, N is sample
size (number of study groups). Test results are presented
in Table 6.

Based on the results, three groups of months were
selected for which the downtime distributions were
not significantly different. Additionally, the lack of
significance of differences in each group was confirmed
using the Kruskal-Wallis test. The first group of months
(group I) included August, September, October and
November. For this group, the chi-squared statistics
y% = 1.245 and p-value = 0.742. The second group (group
II) included February, March, April, May, June, July
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Table 6 Pairwise Wilcoxon Rank Sum Test

January February March  April May dJune July August September October November

February 0.000

March 0.000 0.623

April 0.000 0.738 0.542

May 0.000 0.795 0.481 0.990

June 0.000 0.118 0.386  0.118 0.118

July 0.000 0.040 0.166 0.046 0.046 0.576

August 0.000 0.000 0.000 0.000 0.000 0.001 0.022

September  0.036 0.000 0.000  0.000 0.000 0.000 0.000 0.340

October 0.009 0.000 0.000 0.000 0.000 0.000 0.001 0.621 0.685

November 0.004 0.000 0.000  0.000 0.000 0.000 0.004 0.711 0.576 0.991

December 0.000 0.120 0.376 0.117  0.117 0910 0.701  0.005 0.000 0.000 0.001
Table 7 Parameters of the linear regression model

parameter estimate std error t value p-value
(intercept) 12 1.815 6.634 < 0.001
failure A2 36.8 2.285 16.104 < 0.001
failure B 135.5 2.900 46.731 < 0.001
group I 36.2 2.297 15.772 < 0.001
group IIT 36.3 3.387 10.697 < 0.001

and December. For this group y* = 10.878 and p-value
= 0.092. The last group consisted of only one month,
January, for which no goodness of fit with any other
group was observed. The parameters of the estimated
model are presented in Table 7.

The final form of the model was the following:

y=12 +36.8 *A2 + 135.5 * B + 36.2 *
grl + 36.3 * gr III. (5)

All the model parameters were statistically
significant. Corrected R?* = 48% and AIC = 34045.64.
The values of the parameters describing the quality of
the regression model did not differ significantly from the
basic formula given by Equation (2). The reduction of
the number of factors, achieved by their aggregation in
the manner presented in this paper, did not reduce the
quality of the initial regression model.

5 Summary

Based on a study of municipal bus operations,
a linear multi-regression model of downtime, as
a function of selected groups of months of the year and
type of downtime event (failure), was developed.

This model allows to determine the impact of climate

seasonality over the year and the effect of organizational
and technical factors (type of failure) on bus downtime.
The model also permits to predict the availability
of a transportation system as part of the strategy of
ensuring the continuity of transportation services, e.g.
by introducing the «bus holding» control strategy.

From among the three types of downtime
events, considered as independent variables, the
model includes type B failures (events outside the
company’s control) as the dominant type and type
A2 (operational and organizational) failures (which
have four times less impact than type B events).
Among the selected month groups, the reduced model
presents the summer-autumn season, including August,
September, October and November, as well as the
winter season, which is represented by a single month
- January. The effects of the two seasons on downtime
duration are comparable and similar to the impact
of A2 type failures.
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