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Resume
The work is aimed at the construction of an algorithm for studying the 
equilibrium states of a reinforced plate near critical points, using the first 
(cubic terms) nonlinear terms of the potential energy expansion. Using 
geometrically nonlinear analysis of displacement, deformation and stress 
fields, the Eigenforms of buckling were calculated and bifurcation solutions 
and solutions for equilibrium curves with limit points were constructed 
depending on the initial imperfections.
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of this work [9-11], who, using the FEM, numerically, 
studied the effect of initial imperfections on the bearing 
capacity of a  reinforced plate in the case of multiple 
and multiple critical loads. In these works, it was found 
that, indeed, with simultaneous buckling in the total 
deflection and wave formation in platinum, in the case 
of coincidence of the critical loads, a double bifurcation 
is realized as a homeoclinic point of a hyperbolic umbilic. 
If buckling simultaneously occurs along the general 
deflection and wave formation in the ribs, then the 
double semi-symmetric point is an anticlinic bifurcation 
corresponding to the catastrophe of the elliptical umbilic 
[11]. Important results, using equations of the first and 
second geometrically nonlinear approximations (taking 
into account cubic and quartic terms in the expansion of 
potential energy), were obtained in the 80s by Manevich 
[7-8]. He was able to establish that, limiting himself to 
the first approximation (only cubic terms are taken into 
account), it is possible to obtain acceptable estimates of 
the bearing capacity of a compressed reinforced plate if 
the critical loads of the wave formation in its elements 
are close to or exceed the critical buckling load according 
to the general deflection scheme. If the waveform loads 
are significantly less than the critical load of the total 
deflection, then taking into account additional terms of 
the fourth order in decomposition of the potential energy 
makes it possible to increase the maximum load loss of 
the bearing capacity of the reinforced plate (on average) 
by 30-40%. However, taking into account quartic terms 

1	 Introduction

Interest in the work of compressed reinforced plates 
appeared long ago, however, only starting with the work 
of Koiter and Kuiken [1], Koiter and Pignataro [2], van 
der Neut [3], Tvergaard [4], Hunt [5] and at a later time 
Manevich [6-8], systems of equilibrium equations were 
obtained taking into account geometric nonlinearity, 
which make it possible to analyze the bearing capacity 
of the mentioned plate either taking into account the 
total deflection, or taking into account the interaction of 
this deflection with local waveforms in the ribs or in the 
plate. Geometrically nonlinear equations for describing 
the loss of stability of the considered plates, taking into 
account the interaction of forms, were first presented 
by Koiter and Pignataro [2], Tvergaard focused his 
attention on study of plates with double critical loads 
for the total deflection and for wave formation in the 
plate [4].

In his work, important and general results were 
obtained for the calculation of reinforced plates of 
sufficiently large width and regular arrangement of 
ribs. For this, he isolated a regular T-shaped fragment, 
which was investigated in more detail; some of the 
results obtained by Tvergaard were used by Hunt [5] 
to construct the bifurcation surface of the homeoclinic 
bifurcation point corresponding to the catastrophe of the 
hyperbolic umbilic.

Tvergaard’s studies were continued by authors 
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potential energy, taking into account the interaction of 
these forms, will be written as follows:
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Accordingly, one obtains a simplified version of the 
equilibrium equations:
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For the first nonlinear approximation equations, 
only the cubic terms are retained.
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If one divides each equation by coefficients a1 and a2, 
then one gets equations in the form given by Tvergaard 
[4] :c c1 2 1 2m m m m m m= = = =^ ^h h
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To determine the coefficients aijk and d1, d2 and d3 
it is necessary to calculate some definite integrals over 
the rectangular areas of the mentioned T-element of 
the reinforced plate. Expressions for these integrals: 
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1 2v+ ^ ^ ^ hh h" , are given in the work of Tvergaard 
[4] and in a  slightly modified form in the work of 
Manevich [8]. Equations (9) and (10) include the values 
of the critical parameters 1m  and 2m , which correspond 
to the general shape of bending and local wave formation 
in the plate or ribs.  These quantities are found by 
solving a  linear eigenvalue problem.  Tvergaard solved 
a  homogeneous boundary value problem for a  system 
of biharmonic equations and eight boundary conditions 
for conjugation along the line of contact of the rib with 
the plate:

significantly increases the computational complexity due 
to the need to determine the corrections of the second 
approximation to eigenforms. In this article, the authors 
limited themselves to taking into account only the cubic 
terms in the expansion of the fields of displacements, 
deformations and stresses, since in design practice 
such ratios of the geometric parameters of a reinforced 
plate are used, at which the critical loads of the wave 
formation in a  plate or in the ribs are significantly 
higher than the critical load of the total deflection.

2	 Semi-analitical solution

Here is considered consider a  plate hinged at its 
ends, supported on one side by a  regular set of thin 
rectangular ribs.  The longitudinal edges are free.  The 
plate is compressed by centrally applied forces. The plate 
material is infinitely elastic. This allows to investigate 
the stability of the reinforced plate by analyzing the 
equilibrium of one regular T-shaped fragment (by 
analogy with Tvergaard and Manevich) equidistant with 
the rest of the T-shaped fragments. Strains and Hooke’s 
law are expressed as follows:

,L U L U2
1

1 2f= +^ ^h h 	 (1)

,Hv f= ^ h 	 (2)

where: L1, H - is a linear operator,
L2 -is a quadratic operator,
L2 (U  + V) = L2 (U) + 2 L11 (U, V) + L2 (V), in this 
expression L11 - bilinear operator.

The total potential energy of the reinforced plate 
with the retention of terms no higher than the fourth 
order has the form:
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where: p  - are normalized Eigenforms (the amplitude 
of the deviation of the Eigenmode relative to the plate 
thickness,
sp  - imperfections in the s-th form of buckling (s = 1, 

2, … ..n).
Equilibrium equations are:
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If s = 2 (the total deflection (i = 1)) and the local form 
of wave formation (i = 2) are taken into account, then the 
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and 1p  is .
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coefficients d1, d2, and d3 are negative, which is possible 
only with a homeoclinic bifurcation point (a  variant of 
the catastrophe of a hyperbolic umbilic). This situation 
arises during wave formation in a plate. In the case of 
simple eigenvalues 1 2!m m^ h  the bifurcation solutions of 
the system of nonlinear equations with zero right-hand 
sides 01 2p p= =  turn out to be more complicated:
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Singular points (bifurcation points or limit points) 
appear on the equilibrium curves of the reinforced 
plate when the Hessian matrix degenerates in critical 
equilibrium , ,detH 01 2p p m =^ ^ h h . For Equations (11), 
(12) this matrix has the form:
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If a  problem is considered in which the initial 
imperfection in the total deflection is specified 01 !p_ i  
and there is no initial wave formation 02p =_ i , then 
in this case the solution depends only on the coordinate 

01 2p p =^ h  and the condition of equality to zero of the 
determinant , ,detH 01 2p p m =^ ^ h h  is reduced to the 
fulfillment of one of two relations:
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The most important condition is Equation (21).
, ,h d 022 3 1m p =^ ^ h h .  In this case, the equilibrium 
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These conditions express the relationship between 
the forces and displacements at the edges of the left-
hand and right-hand parts of the plate in relation to 
the rib [8].  In this case, it is assumed that the total 
deflection develops along a  curve close to a  sinusoid 
corresponding to the buckling of the Eulerian rod. Eight 
unknown arbitrary constants are found from a  system 
of homogeneous equations, the matrix of coefficients of 
which is given in the appendix to the work of Tvergaard 
[4].   Manevich solved the same problem variationally, 
using the Rayleigh ratio. By setting a different number 
of half-waves, he found the smallest value of the critical 
loads of wave formation in the plate or in the ribs.

In Equations (11) and (12), on the right-hand sides, 
there are values of the initial imperfections 1p  and 
2p . They correspond to buckling shapes in terms of 

the total deflection and in terms of the shape of local 
wave formation.  If both of these imperfections are 
nonzero, then the critical point is the limiting point. For 
a  homogeneous bifurcation problem 01 2p p= =_ i , 
the simplest solutions correspond to the case of 
multiple loads c1 2m m m= =^ h .  Bifurcation solutions 
for simple loads 1 2!m m^ h  turn out to be somewhat 
more complicated.   If the right-hand side of Equation 
(12) is zero and the right-hand side of Equation (11) 
has an imperfection 01 !p_ i proportional to the load 
parameter, then the bifurcation problem is implemented 
as a  search for the critical value of the load at which 
a plate with a developing initial general deflection loses 
stability in the form of wave formation in the plate or 
in the ribs.

Let the solutions of the simplest problem for 
a double semi-symmetric bifurcation point be considered, 
corresponding to solutions of homogeneous equations of 
Tvergaard’s type. For the general deflection and for the 
solution describing wave formation in the plate, the 
mentioned solutions can be written as follows:
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From the last relations it can be seen that the total 
deflection of the relative amplitude 1p  is an unconnected 
deformation.  It depends on one coordinate only, while 
the wave formation with an amplitude 2p  is linearly 
related to the amplitude of the total deflection.  If this 
amplitude 1p  is equal to zero, then the amplitude 2p  
is also equal to zero. For the values of the coefficients 
of the equations calculated by Tvergaard d1 = -0.0193, 
d2 = 0.6731 and d3 = 0.1138. The ratio between  2p  
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the bifurcation problem in the presence of an initial 
imperfection in the form of a general deflection 01 !p_ i . 
Its solution gives a  critical waveform load in the 
relatively weak ribs of the reinforced plate (Figure 
1). In the graphical form, results for this problem, with 
various initial imperfections, are presented in the work 
of Manevich ([8], ch. III, Figure 3.3).  The investigated 
plate had the following dimensionless parameters: 
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For the plate in Figure 1, the values of the coefficients 
of the Equations, (11) and (12): . , .d d0 009 1 0241 2=- =  
and .d 0 9753 = , taken from [8].

Note that this rib plate contains relatively weak 
elongated cantilever plates.  Loss of stability by wave 
formation should be expected precisely in compressed ribs, 
and not in the plate. This is indicated by the signs of the 
coefficients d 0<1   (this is always), d 0>2  and d 0>3 . 
If all the coefficients d 0<i , then the wave formation 
should be expected in the plate.  It is assumed that 
the relative amplitude of the initial total deflection 
is .0 51p =- . Substituting all the given data into 
Equation (23) one gets:

. .1 9927 0 67033 02n n- + = .	 (25)

The smallest root .0 428cr
1n =  determines the load 

of the bifurcation of wave formation in the compressed 
ribs of the plate with an additional total deflection:
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This bifurcation is symmetrical and unstable, 
since  in the presence of the initial additional wave 
formation in the edges 02 !p_ i  loss of stability occurs 
at the limiting points.  Note that in this case the 
equilibrium curve is spatial, since the load 1n  depends 
on two coordinates 1p  and 2p .

The calculated value of the wave-forming load 
.0 428bif

1n =  coincides with the critical point in table 
3.5 in [8].  Having performed the similar calculations 
for other initial deflections, a  curve is obtained of 

Hence , , , , ,deth d H0 022 3 1 1 2m p p p m= =^ ^h h h  and 
the corresponding point of the curve ,1 1 1n p p_ i  is 
a  point of singular equilibrium.  Whether this point is 
a limit point or a bifurcation point depends on whether 
the value cr

1 1n p^ h  is a  local extremum or not.  If the 
value cr

1 1n p^ h  is not a  local extremum, then the 
singular point is a  bifurcation point (in this problem, 
symmetric and unstable).
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the corresponding equilibrium is regular.  The greatest 
compression load is achieved here, since the post-
bifurcation equilibrium turns out to be unstable. 
The values of the bifurcation load cr
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are determined from the quadratic equation, compiled 
taking into account the relations:
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In the problem solved by Tvergaard [4], the critical 
load is twofold (at the same time there is a  general 
buckling and wave formation in the plate). By specifying 
a  nonzero initial imperfection in the total deflection 

01 !p h , it will be possible to plot the sensitivity curve 
of critical loads at the limiting points depending on the 
value of the initial deflection 1p . Calculations according 
to Equation (23) for k 1- give:
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These results coincide with the values of ultimate 
loads with imperfections of the total deflection on 
the curves constructed by Tvergaard [4]. Consider 

Figure 1 Cross-section of a T-shaped fragment; here b - is the distance between the ribs in the axes,  
h - is the plate thickness, b1 - is the rib height, t1 - is the rib thickness, L - is the length of the reinforced plate,  

boundary conditions: hinged support along the short sides, along the longitudinal edges,  
fastening of the movable termination type
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The condition that the determinant of the Hessian 
matrix is equal to zero Is added to this equation:
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After excluding the coordinates 2p from the 
corresponding expression, we will have:
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As a result, one gets the two equations for variables 
1n  and 1p .  However, their joint solution is quite 

difficult.  Tvergaard was looking for limit points by 
directly constructing the equilibrium curve, while 
Manevich used algorithms for finding the extrema of 
a function of two variables.

The method of the step-by-step increase in the load, is 
used in this work, followed by solution of the equilibrium 
equation to approximately obtain the coordinates of 
the limiting point and the corresponding maximum 
load.  As an example, the coordinates of the limiting 
point and the corresponding load are determined for the 
above stability problem of a reinforced plate with wave 
formation in the ribs. Substitution of numerical values 
into Equations (31), after some simplifications, leads to 
the following equation of the fourth order:

.
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With a fixed value of the force parameter .0 281n =
, one finds the minimal modulo negative root of this 
equation. For that is used a method of the non-singular 
extensions, proposed by Manuilov in 1971 [12].
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dependence of the critical load for the wave formation 
bifurcation in the ribs (Figure 2) on value of the initial 
imperfection in a form of a general deflection.

From the graph in Figure 2 can be seen that the 
value of the critical load of wave formation in the 
ribs strongly decreases with an increase in the initial 
imperfection 1p ; when 11p = , then the wave formation 
load is approximately twice smaller than the eigenvalue 
from the solution of the linear homogeneous problem 
for , . , . .k0 0 6733 0 6733

1 1 48521 2 1p m m= = = =b l .
If in Equations (11) and (12) the right-hand sides are 

not equal to zero, then the problem arises of determining 
the coordinates of the limit point ,* *

1 2p p_ i  and the value 
of the maximum load *

1n .

d d1 1 1 1 1
2

2 2
2

1 1n p p p n p- + + =^ h ,	 (27)

d1 2 2 3 1 2 2 2n p p p n p- + =^ h .	 (28)

From Equation (27) 0!p  is expressed as:

k d

k

1
2

1 3 1

1 2
p

n p
n p

=
- +

.	 (29)

Substituting the resulting expression into Equation 
(28) gives:
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As a  result, freed from the denominator, to 
determine the coordinates of the equilibrium point 1p , 
(at a fixed value of the load 1n ) one obtains an equation 
of the fourth order with respect to 1p .  After some 
transformations, it can be written as:
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Figure 2 Bifurcation curve
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and the coefficients of the above equations di (i=1, 2, 3).

; ; ,V d d V d d V d6
1

3
2 1 122 2111 1 3 1 3 11 322 2=- =- =- 	(37)

; ;V d V dV d k1 2 22 4 11 222 2 1 3 1 2 2n n=- = =n p p .	 (38)

In order for a double semi-symmetric bifurcation not 
to be monoclinic, the condition for the positiveness of the 
root expression T was established in [13]:

,T V
V

V
V2

0>
22

11

122

111= -
n

n  or	 (39)

T
d
d

d d
d d

d
d

d
d

0>
2

3

2 3

1 3

2

3

2

1=
-
-

- = - .	 (40)

The fulfillment of this condition shows that not 
one, but three new branches of equilibria in the form 
of straight lines pass through the double bifurcation 
point.  The wave formation in the plate should be 

expected in the case of identical signs of the ratios 
d
d
2

1

and 
d
d
2

3 . It will occur at the homeoclinic bifurcation 

point (hyperbolic umbilic).  If the signs of the ratios 

d
d
2

1  and
d
d
2

3 are different, then the wave formation will 
occur as a  result of a  local loss of stability of the ribs 
(anticlinic bifurcation point of the elliptical umbilic). 
For this reason, it was indicated above that if all the di 
are negative, then the local buckling corresponds to the 
wave formation in the plate.  If d 0<1  (this is always) 
and d d 0>2 3 , then the wave formation would occur in 
the edges of the reinforced plate. According to research 
of Manevich [8], this feature is also valid for multiple 
critical loads.

Note that signs of coefficients of Equations (11) 
and (12) significantly affect the interaction of the 
general deflection with the local wave formation.  If 
this deflection was positive (all the d 0<i ), then its 
development provokes the wave formation in the plate, 
since it would receive additional compression.

On the contrary, the ribs in this case will be 
somewhat relieved by tensile stresses.  If the total 
deflection is negative , ,d d d0 0 0< > >1 2 3^ h  then, 
on the contrary, the plate will be unloaded and the 
ribs will be loaded with additional compression.  This 
would cause the rippling in the ribs.  The described 
interaction of the general deflection and the effects of 

The iterative process of one-sided approximation 
to the nearest root of a power-law equation is based on 
local approximation of this equation by a  hyperbola or 
an ellipse, depending on the sign of the curvature at 
the tangency point. A sufficient condition for one-sided 
convergence is that all the roots of the polynomial are 
real. The convergence of iterations to the nearest simple 
root of the power equation is asymptotically cubic.

If one moves along the equilibrium curve in 
sufficiently small steps along the load, then jumping 
over the limit point generates a  “hanging” extremum 
(Figure 3). This will be indicated by the negative sign of 
the root expression in the denominator in Equation (35).

The solution of t equation (34) of the fourth order gives 
the desired negative root (closest to zero at .0 281n = ) 
equal to .0 218961p =- .  The second coordinate of 
the equilibrium point is .0 109862p = , according to 
Equation (29). However, the obtained equilibrium point 
is not the limiting one.  Next,  the value of 1n  is 
increased to 0.3. A  similar solution, using Equation 
(35), gives the equilibrium coordinates .0 24221p =- , 

.0 13992p = . With the next value, equal to .0 3251n =
, one obtains a  negative root expression in the 
denominator in Equation (35), equal to -1.129·10-5.  For 
the slightly smaller values 1n  of 1n , a  two-sided 
estimate: . .0 32 0 325< <*1n  is obtained.

The corresponding approximate coordinates of the 
limit point: . , .0 3135 0 1998* *

1 2- -p p- - .
For practical purposes, this is quite sufficient, 

although this result can be refined by subsequent 
calculations. The calculated coordinates of the limiting 
point are close to those shown in Figure 3.3 in the work 
of Manevich [8].

The relationship between the coefficients of 
Equations (11), (12) and the types of the wave formation 
(in the plate or in the ribs) is considered next. Hunt [5], 
investigating the problem of Tvergaard with a  double 
critical load of the total deflection and wave formation 
in the plate, established the relationship between the 
derivatives of potential energy:
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Figure 3 “Hanging” extremum
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with the local waveform of the ribs. This deformation 
is possible only if the deflection of a  negative sign 
develops. The study of this behavior of the structure is 
reduced to solving the bifurcation problem of stability of 
a  compressed T-shaped fragment. To take into account 
the local shape in modeling, the shell-type elements 
were used, which made it possible to consider this 
model as a set of plate-strips and take into account not 
only the membrane deformations of the plate, but the 
transverse deformations of the rib as well. When solving 
the linear stability problem, the calculation of critical 
loads for the first ten eigenforms was obtained.  It is 
important to note that the first eight forms correspond 
to local forms of the wave formation, and only the ninth 
- to the form of the plate buckling, like an Eulerian 
rod E . Mpa, .196133 002 0 3n= =^ h . The first form 
has seven half-waves, which coincides with the result 
obtained in [11]. Figure 4 shows the first Eigenform from 
the linear solution.

Calculating the Euler’s critical load, one gets the 
value P N2245803cr = .  The result, calculated by the 
formula, gives an overestimated value of the critical load, 
since  the scheme for calculating the plate as an Euler 
rack does not take into account the deformation of the 
plate elements of the bar. Research in a  geometrically 
nonlinear setting without taking into account the initial 
imperfections 01p =_ i  made it possible to obtain 
a point of unstable bifurcation on the equilibrium curve, 
corresponding to the shape of the wave formation of the 
edge. The deformed equilibrium and equilibrium curve 
are shown in Figures 5 and 6, respectively. The critical 
load value was: P N.1288934 01cr = .

Figure 5 shows that additional compressive stresses 
act in the zones adjacent to the free edge of the rib and 
cause the wave formation bifurcation at loads lower 
than those obtained from the linear calculation.  This 
deformed state corresponds to equilibrium at the point 
of unstable bifurcation. The new branch, after passing 
the singular point, is falling and unstable.

In cases of the non-zero values of the initial 
imperfections in the total deflection, to construct the 
bifurcation curve (Figure 7), one sets the amplitudes 
of the initial deflections and calculates the critical 

loads.  The results obtained 1
1

n
m
m=c m  are in fairly 

good agreement with the results of the semi-analytical 
solution (Figure 2).

local wave formation is the main feature in behavior of 
a compressed reinforced plate.

When designing reinforced plates, the appropriate 
geometric parameters should be chosen so as to exclude 
the nonlinear interactions between the buckling 
shapes.  For this, it is necessary that the critical loads 
of the wave formation are significantly higher than 
the critical loads of the general buckling. This problem 
requires a separate thorough investigation.

3	 Numerical analysis of a T-shaped fragment  
of a reinforced plate

Algorithms for calculating the critical loads 
for a  reinforced plate, obtaining singular points on 
equilibrium curves were considered earlier and the 
relationship between the signs of the coefficients of 
nonlinear equations and the type of possible wave 
formation was indicated. By limiting the consideration to 
one regular T-shaped fragment, one can draw conclusions 
about the nonlinear behavior of the entire structure 
containing their totality.  A  deep understanding of the 
stability problem, in which there is a  question of the 
interaction of forms, is fully disclosed using the finite 
element modeling and numerical solutions, taking into 
account geometric nonlinearity.

In this part of the work, an analysis of the numerical 
solution using the MSC Software Patran - Nastran 
software package is presented. Finite elements of a shell 
type (3131 elements) are selected. The material was 
considered as absolutely elastic (Е=196133.002MPa, μ = 
0.3). Boundary conditions: hinged support along the short 
sides, along the long sides - floating terminations. The 
load is applied centrally.  Geometric parameters were 
obtained from the relations of Manevich [8, Ch. III] for 
solving this class of problems h = 0.01 m, b = 0.25 m, t1 
= 0.005 m, b1 = 0.1 m, L = 1.25 m. The results obtained 
are compared to the previously obtained results of the 
semi-analytical solution. The interaction of forms can be 
presented in two ways. The first option is the interaction 
of the general and local forms of plate buckling.  It 
manifests itself when the deflection has a  positive 
value. This option does not imply the possibility of the 
wave formation in the ribs, but only in the plate.  The 
second option is the interaction of the general deflection 

Figure 4 First custom form Figure 5 Deformed equilibrium (at 01p = )
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The amplitudes of the rib deflections from the 
vertical plane are much larger in comparison to the 
similar deviations obtained in the problem without 
initial imperfection.

The load Pcr is maximum in the case when the initial 
imperfection is set in the total deflection . .0 51p =-_ i

To get the limiting point on the equilibrium curve, it is 
necessary to specify imperfections in the local and general 
buckling shape.  Setting the amplitudes .0 0051p = m 

By setting the amplitude of the initial deflection 
.0 0051p = m, one finds the critical load of wave formation 

P N.710026 8cr = , and the value .0 4171
1

n
m
m= = , 

which is slightly less than .0 428bif
1n = , obtained from 

the semi-analytical solution.  The amount of deflection 
was .0 004271p =- m, while using Equation (26) one 
got .0 0037281p =- m. The equilibrium curve and the 
initial deformed post-bifurcation equilibrium are shown 
in Figures 8 and 9, respectively.

Figure 6 Equilibrium curve (at 01p = )

Figure 7 Bifurcation curve

Figure 8 Deformed equilibrium (at .0 0051p =- m)

Figure 9 Equilibrium curve (at .0 0051p =- m)
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problem of the reinforced plate stability in the case 
of multiple and non-multiple critical loads.  The most 
dangerous interaction of shapes is the mutual influence 
of local buckling of rectangular ribs with the shape of the 
general deflection. A  detailed solution to this problem 
for the reinforced plates is given in [7].  The reduction 
in bearing capacity reached 60 %.  The results of the 
semi-analytical and numerical solution of stability of the 
T-shaped fragment of the plate turned out to be quite 
close. The above equations are suitable for determining 
the coordinates of singular points on the curves of 
equilibrium and critical loads.

and .0 0011p = m, one finds the value of the critical load 
P N.567021 126cr = N, then .0 33*

1n = , which quite well 
coincides with the upper estimate obtained from the 
semi-analytical solution . .0 32 0 325< <*1n_ i . The total 
deflection left: .0 006731p =- m. The deformed balance 
is shown in Figure 10. The equilibrium curve is shown 
in Figure 11.

4	 Conclusions

The article considers the solution of the nonlinear 

Figure 10 Deformed equilibrium at the limit point (at .0 0051p = m, .0 0011p = m)

Figure 11 Equilibrium curve (at .0 0051p = m, .0 0011p = m)
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