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1 Introduction

Interest in the work of compressed reinforced plates
appeared long ago, however, only starting with the work
of Koiter and Kuiken [1], Koiter and Pignataro [2], van
der Neut [3], Tvergaard [4], Hunt [5] and at a later time
Manevich [6-8], systems of equilibrium equations were
obtained taking into account geometric nonlinearity,
which make it possible to analyze the bearing capacity
of the mentioned plate either taking into account the
total deflection, or taking into account the interaction of
this deflection with local waveforms in the ribs or in the
plate. Geometrically nonlinear equations for describing
the loss of stability of the considered plates, taking into
account the interaction of forms, were first presented
by Koiter and Pignataro [2], Tvergaard focused his
attention on study of plates with double critical loads
for the total deflection and for wave formation in the
plate [4].

In his work, important and general results were
obtained for the calculation of reinforced plates of
sufficiently large width and regular arrangement of
ribs. For this, he isolated a regular T-shaped fragment,
which was investigated in more detail; some of the
results obtained by Tvergaard were used by Hunt [5]
to construct the bifurcation surface of the homeoclinic
bifurcation point corresponding to the catastrophe of the
hyperbolic umbilic.

Tvergaard’s studies were continued by authors

of this work [9-11], who, using the FEM, numerically,
studied the effect of initial imperfections on the bearing
capacity of a reinforced plate in the case of multiple
and multiple critical loads. In these works, it was found
that, indeed, with simultaneous buckling in the total
deflection and wave formation in platinum, in the case
of coincidence of the critical loads, a double bifurcation
is realized as a homeoclinic point of a hyperbolic umbilic.
If buckling simultaneously occurs along the general
deflection and wave formation in the ribs, then the
double semi-symmetric point is an anticlinic bifurcation
corresponding to the catastrophe of the elliptical umbilic
[11]. Important results, using equations of the first and
second geometrically nonlinear approximations (taking
into account cubic and quartic terms in the expansion of
potential energy), were obtained in the 80s by Manevich
[7-8]. He was able to establish that, limiting himself to
the first approximation (only cubic terms are taken into
account), it is possible to obtain acceptable estimates of
the bearing capacity of a compressed reinforced plate if
the critical loads of the wave formation in its elements
are close to or exceed the critical buckling load according
to the general deflection scheme. If the waveform loads
are significantly less than the critical load of the total
deflection, then taking into account additional terms of
the fourth order in decomposition of the potential energy
makes it possible to increase the maximum load loss of
the bearing capacity of the reinforced plate (on average)
by 30-40%. However, taking into account quartic terms
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significantly increases the computational complexity due
to the need to determine the corrections of the second
approximation to eigenforms. In this article, the authors
limited themselves to taking into account only the cubic
terms in the expansion of the fields of displacements,
deformations and stresses, since in design practice
such ratios of the geometric parameters of a reinforced
plate are used, at which the critical loads of the wave
formation in a plate or in the ribs are significantly
higher than the critical load of the total deflection.

2 Semi-analitical solution

Here is considered consider a plate hinged at its
ends, supported on one side by a regular set of thin
rectangular ribs. The longitudinal edges are free. The
plate is compressed by centrally applied forces. The plate
material is infinitely elastic. This allows to investigate
the stability of the reinforced plate by analyzing the
equilibrium of one regular T-shaped fragment (by
analogy with Tvergaard and Manevich) equidistant with
the rest of the T-shaped fragments. Strains and Hooke’s
law are expressed as follows:

£=Li(U)+ 5 Lo(U), (1)
o = Hle), 2)

where: L, H - is a linear operator,
L, -is a quadratic operator,
L,(U+V)=L, (U +2L, U V) + L, (V), in this
expression L, - bilinear operator.

The total potential energy of the reinforced plate
with the retention of terms no higher than the fourth
order has the form:

II, = ao + %Zsas<1 — /%)ff + %Zizjzkx
xapwéi&iEr + %Zizjzk21aifkl‘fifj§k§l - 3)
Sab g

where: £ - are normalized Eigenforms (the amplitude
of the deviation of the Eigenmode relative to the plate
thickness,
&, - imperfections in the s-th form of buckling (s = 1,
2,....n).

Equilibrium equations are:

)l o ()

a1 )e+ 5.8 Sandit
FOE S bbb = X a b ES

(5)

If' s = 2 (the total deflection (i = 1)) and the local form
of wave formation (i = 2) are taken into account, then the

potential energy, taking into account the interaction of
these forms, will be written as follows:

1 ANgr 1 A\ g
H;:ao+7d1<1—x—1>§f+§02(1—Tz)f§+
+%amf? + dlzszuf% + %dnnf? + %dzzzzf% + . (6
+%011225%§%*%dlgfl/%dzafz.

Accordingly, one obtains a simplified version of the
equilibrium equations:

a1<1 — %)éﬂ + amét + a1nés + ann i +

A, E @
+auné & = /l_lalfl,

dz(l — %)f; + 2a1261&5 + a1 é1E, +

F— (8)
+ dzzzzfg = /l—zazfz.

For the first nonlinear approximation equations,
only the cubic terms are retained.

01(1—%)514‘01115%4‘01225%:%dlfﬁ, 9)

dz(l _%)52-1-2012251(,&2 :%azg. (10)
If one divides each equation by coefficients a, and a,,
then one gets equations in the form given by Tvergaard

[4] (/11 == //tc)(;tl == A«c):

(1 - %)51 + A&+ dol = %E, (11)

(1_%>§2+d3§152:%5, 12)

where: d; = %,dz = %,ds = 22—;22.

To determine the coefficients a;, and d, d, and d,
it is necessary to calculate some definite integrals over
the rectangular areas of the mentioned T-element of
the reinforced plate. Expressions for these integrals:
ar = _/11{0'0112([](1))}, as = —/12{0'0112([](2))},
am = %{O'le(Um)} and @iz =1{0'L(U?)} +
+{o?Lu(UY,U?)} are given in the work of Tvergaard
[4] and in a slightly modified form in the work of
Manevich [8]. Equations (9) and (10) include the values
of the critical parameters A1 and A:, which correspond
to the general shape of bending and local wave formation
in the plate or ribs. These quantities are found by
solving a linear eigenvalue problem. Tvergaard solved
a homogeneous boundary value problem for a system
of biharmonic equations and eight boundary conditions
for conjugation along the line of contact of the rib with
the plate:
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D AAw: = AcNY W, o, (13)

T AAF: = 0. (14)

These conditions express the relationship between
the forces and displacements at the edges of the left-
hand and right-hand parts of the plate in relation to
the rib [8]. In this case, it is assumed that the total
deflection develops along a curve close to a sinusoid
corresponding to the buckling of the Eulerian rod. Eight
unknown arbitrary constants are found from a system
of homogeneous equations, the matrix of coefficients of
which is given in the appendix to the work of Tvergaard
[4]. Manevich solved the same problem variationally,
using the Rayleigh ratio. By setting a different number
of half-waves, he found the smallest value of the critical
loads of wave formation in the plate or in the ribs.

In Equations (11) and (12), on the right-hand sides,
there are values of the initial imperfections &; and
&, . They correspond to buckling shapes in terms of
the total deflection and in terms of the shape of local
wave formation. If both of these imperfections are
nonzero, then the critical point is the limiting point. For
a homogeneous bifurcation problem (&, = &; =0),
the simplest solutions correspond to the case of
multiple loads (A1 = A2 = A.). Bifurcation solutions
for simple loads (Ai# As) turn out to be somewhat
more complicated. If the right-hand side of Equation
(12) is zero and the right-hand side of Equation (11)
has an imperfection (&, # 0)proportional to the load
parameter, then the bifurcation problem is implemented
as a search for the critical value of the load at which
a plate with a developing initial general deflection loses
stability in the form of wave formation in the plate or
in the ribs.

Let the solutions of the simplest problem for
a double semi-symmetric bifurcation point be considered,
corresponding to solutions of homogeneous equations of
Tvergaard’s type. For the general deflection and for the
solution describing wave formation in the plate, the
mentioned solutions can be written as follows:

flz—d%(l—/%), (15)

From the last relations it can be seen that the total
deflection of the relative amplitude £: is an unconnected
deformation. It depends on one coordinate only, while
the wave formation with an amplitude &, is linearly
related to the amplitude of the total deflection. If this
amplitude & is equal to zero, then the amplitude &
is also equal to zero. For the values of the coefficients
of the equations calculated by Tvergaard d, = -0.0193,
d, = 0.6731 and d, = 0.1138. The ratio between &

dy — di

and & is 4/——— = 0.374. Note that all the three

coefficients d, d,, Zand d, are negative, which is possible
only with a homeoclinic bifurcation point (a variant of
the catastrophe of a hyperbolic umbilic). This situation
arises during wave formation in a plate. In the case of
simple eigenvalues (A1 # A2) the bifurcation solutions of
the system of nonlinear equations with zero right-hand
sides &1 = &2 = 0 turn out to be more complicated:

f=—gli-7) an
ﬂl_i_
ford foafald) ]
ol =%) (18)
. ds(l*%)_ﬁ
a(1-4) @

Singular points (bifurcation points or limit points)
appear on the equilibrium curves of the reinforced
plate when the Hessian matrix degenerates in critical
equilibrium (det H(&1,E5,4) = 0). For Equations (11),
(12) this matrix has the form:

2dz¢5
(1 *%)+d3§1 .

(1 */%)Jr 2d: &,
ds&>

H= (19)

If a problem is considered in which the initial
imperfection in the total deflection is specified (&1 #0)
and there is no initial wave formation (&, = 0), then
in this case the solution depends only on the coordinate
£1(£2=0) and the condition of equality to zero of the
determinant (det H(&1,E:,A4) = 0) is reduced to the
fulfillment of one of two relations:

hu:(l—%)—ﬁ—&h&:o,or (20)
hzz(l—/%>+d3§1:0. (21)

The most important condition is Equation (21).

(h22(A,ds,E1) = 0). In this case, the equilibrium
Equation (12) ((1 - %) + &1 )£2 = 0 is fulfilled in
two versions:

@) & =0,but ((1—%>+d351)¢0.

Hence (hao(A,ds, 1) #0),det H(E1,E0,A) #0),
which corresponds to regular points on the equilibrium
curve ﬂl(fl,a),<#1 = %)

b & =0 and ((1—%)+d351):0.
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Figure 1 Cross-section of a T-shaped fragment; here b - is the distance between the ribs in the axes,
h - is the plate thickness, b, - is the rib height, t, - is the rib thickness, L - is the length of the reinforced plate,
boundary conditions: hinged support along the short sides, along the longitudinal edges,
fastening of the movable termination type

Hence h»(A,ds,&1) = 0,det H(E,E2,A) = 0) and
the corresponding point of the curve wui(&1,&:) is
a point of singular equilibrium. Whether this point is
a limit point or a bifurcation point depends on whether
the value u:(£Y) is a local extremum or not. If the
value :1(&{) is not a local extremum, then the
singular point is a bifurcation point (in this problem,
symmetric and unstable).

o & 0,<<1 — %) + d3§1> = ( moreover
ha(A,ds,E1) = 0.
detH(fl,-fz,A) = *Zdzd:;-f%#()

the corresponding equilibrium is regular. The greatest

However, and
compression load is achieved here, since the post-
bifurcation equilibrium turns out to be unstable.
The values of the bifurcation load ,ui’( U1 = /%)
are determined from the quadratic equation, compiled

taking into account the relations:

l—k,ul :k‘lth—l

hzz(l,dﬁ"fl) = 0’51 - ds ds
22)
p e
A
pi(kedy = dok) + i (ds o+ dak — 2kdy — d3E0) + 0

+di—ds = 0.

In the problem solved by Tvergaard [4], the critical
load is twofold (at the same time there is a general
buckling and wave formation in the plate). By specifying
a nonzero initial imperfection in the total deflection
E1#0), it will be possible to plot the sensitivity curve
of critical loads at the limiting points depending on the
value of the initial deflection & . Calculations according
to Equation (23) for £ — 1give:

E1 =02 1:(0,2) = 0.8476,
£ =05 1:(0,5) = 0.7703,
E =10 wui(1,0) = 0.692.

(24)

These results coincide with the values of ultimate
loads with imperfections of the total deflection on
the curves constructed by Tvergaard [4]. Consider

the bifurcation problem in the presence of an initial
imperfection in the form of a general deflection (&, #0).
Its solution gives a critical waveform load in the
relatively weak ribs of the reinforced plate (Figure
1). In the graphical form, results for this problem, with
various initial imperfections, are presented in the work
of Manevich ([8], ch. III, Figure 3.3). The investigated
plate had the following dimensionless parameters:
b

7 =2

b1

=20

hor 1 L A
o 5k 5,k = T 1.4852 .

For the plate in Figure 1, the values of the coefficients
of the Equations, (11) and (12): d1 = — 0.009,d: = 1.024
and ds = 0.975, taken from [8].

Note that this rib plate contains relatively weak
elongated cantilever plates. Loss of stability by wave
formation should be expected precisely in compressed ribs,
and not in the plate. This is indicated by the signs of the
coefficients d; < 0 (this is always), d» > 0 and d3 > 0.
If all the coefficients d; < 0, then the wave formation
should be expected in the plate. It is assumed that
the relative amplitude of the initial total deflection
is & = —0.5. Substituting all the given data into
Equation (23) one gets:

M5 — 199274 + 0.67033 = 0. (25)

The smallest root ui" = 0.428 determines the load
of the bifurcation of wave formation in the compressed
ribs of the plate with an additional total deflection:

£o=—L R g,

7, (26)

This bifurcation is symmetrical and unstable,
since in the presence of the initial additional wave
formation in the edges (&,# 0) loss of stability occurs
at the limiting points. Note that in this case the
equilibrium curve is spatial, since the load 1 depends
on two coordinates &1 and &».

The calculated value of the wave-forming load
47 =0.428 coincides with the critical point in table
3.5 in [8]. Having performed the similar calculations
for other initial deflections, a curve is obtained of
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Figure 2 Bifurcation curve

dependence of the critical load for the wave formation
bifurcation in the ribs (Figure 2) on value of the initial
imperfection in a form of a general deflection.

From the graph in Figure 2 can be seen that the
value of the critical load of wave formation in the
ribs strongly decreases with an increase in the initial
imperfection £;;when &; = 1, then the wave formation
load is approximately twice smaller than the eigenvalue
from the solution of the linear homogeneous problem

- _ - o 1 o
(for & = 0,22 = 0.673321,k = 5oy = 1.4852).

Ifin Equations (11) and (12) the right-hand sides are
not equal to zero, then the problem arises of determining
the coordinates of the limit point (£1,£%) and the value
of the maximum load ;.

(1 —u)ér+ diét + do£3 = i &1, @0
(1 — w2)és+ dsérEs = €. (28)
From Equation (27) £ # 0 is expressed as:
__ kwé
§2= 1— ks +dsé: @9

Substituting the resulting expression into Equation
(28) gives:

(1—m)é+ d‘lf% +
(k&) d>
(1 — kur) + dsér)

(30)

= ﬂlz.

As a result, freed from the denominator, to
determine the coordinates of the equilibrium point &,
(at a fixed value of the load 1) one obtains an equation
of the fourth order with respect to &;. After some
transformations, it can be written as:

dids &L+ [ 2d1ds (1 — k) + d3 (1 — ) |1+
+[2ds(1 — )1 — k) + di(1 — k¥ —
—di & E (1 — )1 — kn ¥ —
—2ds(1 — k) i &1 |E1 + (Run Y doEE —
—(1 = kY i ér = 0.

(31)

The condition that the determinant of the Hessian
matrix is equal to zero Is added to this equation:

det H(p1,€1,€2) = [(1 — 1) + 2d1 &1 ] x

, 32
X[(1 — k1) + dsé1] — 2d2dsE5 = 0. (32)
After excluding the coordinates &;from the
corresponding expression, we will have:
det H(u1,E1,A) = (1 — 1) + 2d1E (1 — kpn) +
dld:ﬂ(kﬂl)zfé (33)

+d3§1*( = 0.

1— by + ds&:1)

As a result, one gets the two equations for variables
M1 and &;. However, their joint solution is quite
difficult. Tvergaard was looking for limit points by
directly constructing the equilibrium curve, while
Manevich used algorithms for finding the extrema of
a function of two variables.

The method of the step-by-step increase in the load, is
used in this work, followed by solution of the equilibrium
equation to approximately obtain the coordinates of
the limiting point and the corresponding maximum
load. As an example, the coordinates of the limiting
point and the corresponding load are determined for the
above stability problem of a reinforced plate with wave
formation in the ribs. Substitution of numerical values
into Equations (31), after some simplifications, leads to
the following equation of the fourth order:

J(E1) = —0.008773E1 + 0.67376£7 + 0.94993&7 +

34
+0.405&1 + 0.0495 = 0. @4

With a fixed value of the force parameter 1; = 0.28
, one finds the minimal modulo negative root of this
equation. For that is used a method of the non-singular
extensions, proposed by Manuilov in 1971 [12].

m+1 __
1 =

. LA

) gl

(35)
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Figure 3 “Hanging” extremum

The iterative process of one-sided approximation
to the nearest root of a power-law equation is based on
local approximation of this equation by a hyperbola or
an ellipse, depending on the sign of the curvature at
the tangency point. A sufficient condition for one-sided
convergence is that all the roots of the polynomial are
real. The convergence of iterations to the nearest simple
root of the power equation is asymptotically cubic.

If one moves along the equilibrium curve in
sufficiently small steps along the load, then jumping
over the limit point generates a “hanging” extremum
(Figure 3). This will be indicated by the negative sign of
the root expression in the denominator in Equation (35).

The solution of t equation (34) of the fourth order gives
the desired negative root (closest to zero at 1 = 0.28)
equal to &; = —0.21896. The second coordinate of
the equilibrium point is &» = 0.10986, according to
Equation (29). However, the obtained equilibrium point
is not the limiting one. Next, the value of u: is
increased to 0.3. A similar solution, using Equation
(35), gives the equilibrium coordinates &; = —0.2422,
&, = 0.1399 . With the next value, equal to x; = 0.325
, one obtains a negative root expression in the
denominator in Equation (35), equal to -1.129-10®. For
the slightly smaller values w1 of w1, a two-sided
estimate: 0.32 < w1 < 0.325 is obtained.

The corresponding approximate coordinates of the
limit point: &1 ~—0.3135,&5 ~ —0.1998 .

For practical purposes, this is quite sufficient,
although this result can be refined by subsequent
calculations. The calculated coordinates of the limiting
point are close to those shown in Figure 3.3 in the work
of Manevich [8].

The relationship between the coefficients of
Equations (11), (12) and the types of the wave formation
(in the plate or in the ribs) is considered next. Hunt [5],
investigating the problem of Tvergaard with a double
critical load of the total deflection and wave formation
in the plate, established the relationship between the
derivatives of potential energy:

1,52,?13?2) = %%115?+%%22§§f1+ 36)

m.(
+%,U1< Vuyf% + sz,uf%) + Vflzlfl + szzfzfz

and the coefficients of the above equations d, (i=1, 2, 3).
Vi == 2didsF Vio = — 2dbdsi g Vi = — ds, 37)

3 Vo = = 2dsVier = 2dspt;Voer = Adokptn. (38)

In order for a double semi-symmetric bifurcation not
to be monoclinic, the condition for the positiveness of the
root expression T was established in [13]:

_2Viu v

T= V0o (39)
C d dde dy dy
= —ds dasds o ds 9 > 0. (40)

The fulfillment of this condition shows that not
one, but three new branches of equilibria in the form
of straight lines pass through the double bifurcation
point. The wave formation in the plate should be

expected in the case of identical signs of the ratios %
and Z,LZ It will occur at the homeoclinic bifurcation
point (hyperbolic umbilic). If the signs of the ratios
d—; and d—: are different, then the wave formation will
occur as a result of a local loss of stability of the ribs
(anticlinic bifurcation point of the elliptical umbilic).
For this reason, it was indicated above that if all the d,
are negative, then the local buckling corresponds to the
wave formation in the plate. If di <0 (this is always)
and da:ds; > 0, then the wave formation would occur in
the edges of the reinforced plate. According to research
of Manevich [8], this feature is also valid for multiple
critical loads.

Note that signs of coefficients of Equations (11)
and (12) significantly affect the interaction of the
general deflection with the local wave formation. If
this deflection was positive (all the d; <0), then its
development provokes the wave formation in the plate,
since it would receive additional compression.

On the contrary, the ribs in this case will be
somewhat relieved by tensile stresses. If the total
deflection is negative (di < 0,dz>0,d;>0) then,
on the contrary, the plate will be unloaded and the
ribs will be loaded with additional compression. This
would cause the rippling in the ribs. The described
interaction of the general deflection and the effects of
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Figure 4 First custom form

local wave formation is the main feature in behavior of
a compressed reinforced plate.

When designing reinforced plates, the appropriate
geometric parameters should be chosen so as to exclude
the nonlinear interactions between the buckling
shapes. For this, it is necessary that the critical loads
of the wave formation are significantly higher than
the critical loads of the general buckling. This problem
requires a separate thorough investigation.

3 Numerical analysis of a T-shaped fragment
of a reinforced plate

Algorithms for calculating the critical loads
for a reinforced plate, obtaining singular points on
equilibrium curves were considered earlier and the
relationship between the signs of the coefficients of
nonlinear equations and the type of possible wave
formation was indicated. By limiting the consideration to
one regular T-shaped fragment, one can draw conclusions
about the nonlinear behavior of the entire structure
containing their totality. A deep understanding of the
stability problem, in which there is a question of the
interaction of forms, is fully disclosed using the finite
element modeling and numerical solutions, taking into
account geometric nonlinearity.

In this part of the work, an analysis of the numerical
solution using the MSC Software Patran - Nastran
software package is presented. Finite elements of a shell
type (3131 elements) are selected. The material was
considered as absolutely elastic (=196133.002MPa, n =
0.3). Boundary conditions: hinged support along the short
sides, along the long sides - floating terminations. The
load is applied centrally. Geometric parameters were
obtained from the relations of Manevich [8, Ch. III] for
solving this class of problems 2 = 0.01m, b = 0.25m, ¢,
=0.005m, b, = 0.1m, L = 1.25m. The results obtained
are compared to the previously obtained results of the
semi-analytical solution. The interaction of forms can be
presented in two ways. The first option is the interaction
of the general and local forms of plate buckling. It
manifests itself when the deflection has a positive
value. This option does not imply the possibility of the
wave formation in the ribs, but only in the plate. The
second option is the interaction of the general deflection

Figure 5 Deformed equilibrium (at E =0)

with the local waveform of the ribs. This deformation
is possible only if the deflection of a negative sign
develops. The study of this behavior of the structure is
reduced to solving the bifurcation problem of stability of
a compressed T-shaped fragment. To take into account
the local shape in modeling, the shell-type elements
were used, which made it possible to consider this
model as a set of plate-strips and take into account not
only the membrane deformations of the plate, but the
transverse deformations of the rib as well. When solving
the linear stability problem, the calculation of critical
loads for the first ten eigenforms was obtained. It is
important to note that the first eight forms correspond
to local forms of the wave formation, and only the ninth
- to the form of the plate buckling, like an Eulerian
rod (E = 196133.002Mpa, £ = 0.3). The first form
has seven half-waves, which coincides with the result
obtained in [11]. Figure 4 shows the first Eigenform from
the linear solution.

Calculating the Euler’s critical load, one gets the
value Po = 2245803N. The result, calculated by the
formula, gives an overestimated value of the critical load,
since the scheme for calculating the plate as an Euler
rack does not take into account the deformation of the
plate elements of the bar. Research in a geometrically
nonlinear setting without taking into account the initial
imperfections (£, = 0) made it possible to obtain
a point of unstable bifurcation on the equilibrium curve,
corresponding to the shape of the wave formation of the
edge. The deformed equilibrium and equilibrium curve
are shown in Figures 5 and 6, respectively. The critical
load value was: P.. = 1288934.01N .

Figure 5 shows that additional compressive stresses
act in the zones adjacent to the free edge of the rib and
cause the wave formation bifurcation at loads lower
than those obtained from the linear calculation. This
deformed state corresponds to equilibrium at the point
of unstable bifurcation. The new branch, after passing
the singular point, is falling and unstable.

In cases of the non-zero values of the initial
imperfections in the total deflection, to construct the
bifurcation curve (Figure 7), one sets the amplitudes
of the initial deflections and calculates the critical

loads. The results obtained ( M1 = %) are in fairly
good agreement with the results of the semi-analytical

solution (Figure 2).
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By setting the amplitude of the initial deflection
0.005 m, one finds the critical load of wave formation

= 0417,

E —
P.. = 710026.8N, and the value w1 = A
which is slightly less than ,ufif = 0.428, obtained from
the semi-analytical solution. The amount of deflection
was &1 = —0.00427 m, while using Equation (26) one
got &1 = —0.003728 m. The equilibrium curve and the
initial deformed post-bifurcation equilibrium are shown
in Figures 8 and 9, respectively.

The amplitudes of the rib deflections from the
vertical plane are much larger in comparison to the
similar deviations obtained in the problem without
initial imperfection.

The load P_ is maximum in the case when the initial
imperfection is set in the total deflection (&, = —0.5).

To get the limiting point on the equilibrium curve, it is
necessary to specify imperfections in the local and general
buckling shape. Setting the amplitudes &; = 0.005m
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and &; = 0.001 m, one finds the value of the critical load
P. = 567021.126N N, then 4 = 0.33 , which quite well
coincides with the upper estimate obtained from the
semi-analytical solution (0.32 < 41 < 0.325). The total
deflection left: £; = — 0.00673 m. The deformed balance
is shown in Figure 10. The equilibrium curve is shown
in Figure 11.

4 Conclusions

The article considers the solution of the nonlinear
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