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Resume
This paper deals with implementation of artificial neural network in the 
maximum power point tracking (MPPT) controller algorithm for modern 
household where electric vehicle (EV) was purchased. The proposed MPPT 
algorithm was designed to achieve the best possible efficiency of the MPP 
(maximum power point) tracking and the best possible energy harvesting 
to charge the EV’s battery. The artificial neural networks have strong 
advantage in fast input to output response of signals and the finding of MPP 
is faster than in commonly used algorithms. In this article, the optimised 
simulation model based on artificial neural network will be introduced. The 
proposed artificial neural network algorithm was designed for non-shielded 
photovoltaic panels.
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point tracking method is strongly required to maximize 
generated power. The PV panel used is modelled as 
a single-diode circuit with current source and serial and 
parallel resistances [4]. Principal schematic of one PV 
cell is illustrated in Figure 1. The mathematic relation 
between the PV cell’s output current and output voltage 
can be described as:
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where: 
ICELL	 output current of PV module, 
VPV	 output voltage, 
IPV	 photocurrent,
Is 	 diode saturation current,
VT	 the thermal voltage,
Rp	 equivalent serial resistance,
Rs	 equivalent serial resistance.

The thermal voltage is expressed as:
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where:
n	 ideality factor, 
k	 Boltzmann constant [1.381 x 10-23 J/K], 
T 	 temperature of the cell, 
Ns 	 number of solar cells in the PV module connected 

in series, 
q	 elementary electron charge [4-6].

1	 Introduction

In recent years there has been growing interest 
in producing electricity from solar energy and other 
renewable energy sources (RES). Since it is truly 
renewable energy source, it is a  valuable non-polluting 
alternative to fossil fuel energy sources in industrial, 
household or transport applications. Main disadvantages 
of the solar energy are relatively high costs, lower 
efficiency of photovoltaic (PV) systems (37 - 40 %) and 
dependence on weather conditions, as well as difficulties 
of storing this kind of energy [1]. In addition, the 
maintenance and cleaning of solar panels is not easy in 
some cases, i.e. on high-rise buildings. With assistance 
of the PV panels, or other renewable energy sources, the 
electric grid energy consumption and electricity bills can 
be easily reduced. The whole PV panel industry has been 
growing market creating new job opportunities and new 
opportunities for research. The effort of many research 
teams is aimed at efficiency maximization of the solar 
energy conversion. In addition, the smart control methods 
can increase the efficiency significantly. New materials 
with higher efficiency are researched and new algorithms 
for the PV systems power control, as well [1-4].

2	 Theoretical background

The electrical power of the PV cells can vary 
significantly during the day, therefore maximum power 
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back. Due to cloud shielding, the solar energy flow is 
not continuous; it is necessary for the system to use the 
household battery to supply energy during disturbances 
caused by the clouding of the PV panels.

The trained ANN implemented to the control system 
(microcontroller) controls the switching converter with 
the requested current I* to create the optimal load for the 
PV panels to achieve maximum charging performance. 
Reference current signal is internally converted into 
the pulse width modulation (PWM) signals used to 
switching MOSFET transistors in switching converter 
[9-10]. The ANN controls the converter with using 
of PV panel voltage, PV panel current and PV panel 
temperature signals. For the safety reasons, the battery 
voltage and current are connected to control block 
and the system is switched off if any error occurs. 
Big advantage of this setup with household battery is 
supplying the EV charger without interruptions and 
energy flow fluctuations during the clouding. Principal 
block diagram of used model is shown in Figure 3.

The solar irradiance and the PV panel temperature 
are usually chosen as input data for neural network 
in MPPT control. The advantage is possibility to 
simulate photovoltaic panel in simulation software 
MATLAB. However, the sensors for measurement of 
solar irradiance are much more expensive and the whole 
solution is therefore less cost-effective. Random electrical 
current, voltage of PV panels and real temperature 
of photovoltaic panels are also used as input data 
(input neurons) for the trained neural network [10-15]. 

Artificial neural networks (ANN) are considered 
as mathematical-computational models inspired by 
biological neural networks. Neural networks were used 
in various areas, like robotics, function approximation, 
regression analysis, time series prediction, classification, 
modelling or data processing [7]. The ANN have become 
a  standard tool in computer science for the function 
approximation of various digital patterns and data 
inputs. and are also considered to be one of the most 
successful computer classification models. 

According to the universal approximation theorem, 
the ANN with just 1 hidden layer can approximate any 
continuous function. ANNs can be therefore considered 
as efficient function approximators. These statements 
deal predominately with existence of solution in the 
form of unique weight coefficients, they do  not say 
anything about exact method how to find the most 
optimal parameters of a neural network. It is not always 
easy to find solution that represents global minimum of 
the cost function instead of localy minimum [8]. Figure 
2 shows principal diagram of the feed-forward neural 
network. 

3	 MPPT controller based on ANN

System consists of PV panels, isolated switching 
converter, household battery and the EV’s battery. 
In this system, only the unidirectional energy flow is 
realized from the PV panel to the electric vehicle battery 

Figure 1 Principal schematic of diode model of PV panel

Figure 2 Principal diagram of neural network
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4	 Methods

The real PV installation contained 8 x (2 in series, 
4 in parallel) amorphous CSI (copper-selenium-indium) 
Avancis Powermax 125W panels. The installation of PV 
panels is shown in Figure 5. Electrical parameters of the 
PV panel are described in Table 1.

The neural network’s input data were obtained from 
the simulation of P-V and I-V characteristics of the PV 

The MPP searching algorithm, due to trained values, 
estimates the PV current, PV voltage and the PV power 
at the maximal power point (3 output neurons). Than 
in the MPPT algorithm the estimated MPP current 
by the ANN is requested by the switching converter 
interpreted by the change of duty of the PWM signal. 
This cycle periodically in the infinite loop. The graphical 
interpretation of the proposed MPPT algorithm is shown 
in Figure 4 [16].

Figure 3 Principal schematics of the MPPT system based on ANN

Figure 4 Principal working diagram of proposed MPPT algorithm based on ANN
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obtained for the neural network training. These electrical 
parameters were depended on temperature and solar 
irradiance level and were obtained in simulation. Figure 
6 describes the process of gathering electrical parameters 
from I-V characteristics of the PV panels. The 10 points 
were chosen from point of maximum power (red circle) 
towards the zero current and 10 points towards the 
maximum current of photovoltaic panel characteristics. 
The intervals were linearly spaced along the x axis; 
therefore, one solar irradiance value corresponded to 21 
current and voltage values.

panels in MATLAB Simulink There were 96 different 
temperature levels (min -20 °C; max 75 °C; step 1 °C) 
and 100 irradiance levels (min 10 W/m2; max 1000 W/
m2; step 10 W/m2). During the PV panels simulation 
more than 200  000 unique combinations of mentioned 
parameters were created. The temperature, electrical 
current and voltage of the PV panel were chosen as 
input data of the neural network for MPPT control. Since 
MATLAB Simulink model of PV panel uses temperature 
and solar irradiance as input data, the reference values 
of electrical voltage and current of PV panels had to be 

Figure 5 The PV string installation on the University Science Park’s roof in Zilina, Slovakia

Figure 6 I-V curve of the PV panel

Table 1 The specification of single Avancis PowerMax 125 PV

Maximum power 125 W

Voltage at maximum power 44 V

Current at maximum power 2.84 A

Open circuit voltage 59.3 V

Short circuit voltage 3.22 A

Nominal operating voltage 52.6 V
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resetting state of random number generator at each 
trial. In order to potentially implement the neural 
network in a microcontroller, the basic type of the feed-
forward 2-layer neural network (FFNN) was chosen. 
The ANN was implemented with MATLAB and its 
architecture is shown in Figure 7.

5	 Simulation results

The dataset was divided to training (70 %), 
validation (15 %) and testing (15 %) set. The effort 
to prevent the ANN from overfitting was important, 
therefore the division of data to individual sets was 
random and training was stopped after increasing of 
network’s error in validation set. Several optimization 

The neural network contains 3 input neurons - input 
current, input voltage and input temperature. Hidden 
layer contains 25 neurons and output layer contains 
3 neurons. These 3 neurons (outputs) interpret the 
PV current (1st neuron), PV voltage (2nd neuron) that 
occurs at the maximum output power (3rd neuron) for 
specified input temperature of PV panels. The sigmoidal 
activation function was used in the hidden layer and 
the linear activation function in the output layer. 
The network was trained with Levenberg-Marquardt 
optimization algorithm [7]. Number of neurons in the 
hidden layer was obtained experimentally as a number 
with the best network’s MSE (mean squared error) in 
an interval (5; 50). Due to improving the training time, 
the conjugate gradient optimization method was chosen 
and every ANN architecture was trained 10 times by 

Figure 7 The proposed architecture of the ANN for MPPT controller

Figure 8 The ANN’s training performance vs. epochs
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increasing of MSE parameter in validation set was 
observed. The correlation coefficient R is related to 
linear correlation between target and predicted values 
of neural network model. R is considered as indicator of 
goodness of neural network’s fit for the observation data 
and is expressed as:
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where:
xi	 predicted value of sample i
x 	 mean of predicted values

yi	 target value of sample i
y 	 mean of target values

n	 sample size (number of patterns)

methods for the neural network training have been 
compared. Finally, the Levenberg-Marquardt algorithm 
was chosen, since the best network’s performance and 
speed of convergence were achieved. The training’s stop 
criterium was met at finishing 5000 iteration cycles or 
MSE (mean-square error) lower than 0.0001. Figure 8 
shows the dependence of the neural network MSE on 
iteration cycles. The convergence speed is very high and 
MSE decreased more than 1000 times during the initial 
iterations. This result is consistent over validation and 
testing set, as well as in the whole spectrum of tested 
values.

Table 2 shows neural network’s mean square error 
after 1000 training iteration cycles and regression 
coefficients in 10 random training cases. No significant 

Table 2 The ANN performance in individual cases (R* is rounded to 7 decimal places)

Case MSE Corr. coef. R*
1 0.0251 1.0

2 0.0524 1.0

3 0.1011 1.0

4 0.0249 1.0

5 0.0536 1.0

6 0.0801 1.0

7 0.0251 1.0

8 0.0524 1.0

9 0.0199 1.0

10 0.0149 1.0

Figure 9 Regression plots across training, validation and test set
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The September 12, 2020 was chosen as an example 
for graphic presentation of NN performance since the 
solar irradiance was changing significantly during the 
day. The irradiance and temperature were used for 
computing the reference values of maximum power 
(blue curve in Figure 10) of the PV panels simulated 
in MATLAB Simulink. The ANN simulated maximum 
power corresponds to yellow curve. Since the curves 
were completely overlapped, different widths of lines 
were chosen. These results confirmed neural network’s 
potential to quickly respond to sudden changes of solar 
irradiance, since the network error did not increase in 
predicted maximum power.

Figure 10 shows the relative difference in predicted 
power of used neural network model versus the reference 

Figure 9 shows regression plots of training, 
validation and test sets. The regression coefficient in all 
sets is close to 1. These results successfully confirmed 
the ANN ability to track maximum power with high 
accuracy.

In order to verify capability of the trained neural 
network to track the maximum power of the PV panel, 
the numerical simulation was performed. The simulation 
input data were collected from Copernicus Atmosphere 
Monitoring Service (CAMS) after registration on the 
SoDa web service [17]. The time series of temperature 
and beam irradiation for the actual geographical location 
and weather condition were obtained for year 2020. 
These data were analysed with respect to cumulative 
absolute difference in solar irradiance during the day. 

Figure 10 The comparison of ANN’s predicted power versus the reference power

Figure 11 The relative difference in ANN predicted power versus the reference power
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neural network input was introduced. This method 
requires I-V curves of a  particular PV panel under 
various solar irradiance values. The needed I-V curves of 
that PV panel can be generated in MATLAB Simulink, 
the solar irradiance and temperature are only required 
parameters. The neural network’s performance was 
tested in computer simulation based on satellite-
derived solar irradiance data. The presented neural 
network MPPT model can quickly respond to sudden 
changing of solar irradiance values. The response time 
depends mainly on speed of input data acquisition 
since the neural network model contains only 150 
weight connections. Partial shading conditions of the 
PV systems were not the object of this research. 
Additional sensors, measuring the shielded area of 
a PV system, could provide important information for 
neural network in order to deal with partial PV panels 
shading conditions. These conditions will be a part of 
the authors’ future research.
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power obtained from the atmospheric data. The same 
irradiance and temperature obtained from online CAMS 
service on September 12, 2020 were used for computation 
of power reference values [18]. The relative difference in 
predicted and real power, as shown in Figure 11, was 
obtained below 0.1 % during the most of the day and did 
not exceed 0.5 % at sunrise and sunset periods.

6	 Conclusions

In this article, the MPPT algorithm, based on 
artificial neural network, for modern household with 
an electric vehicle, was presented. All the parameters 
of the PV system and MPPT controller were designed 
to achieve the best maximum power point tracking 
efficiency and maximum charging performance of the 
EV’s battery. The final architecture of neural network, 
layers and activation functions were described. The 
main advantage of the proposed model is simplicity 
of obtaining the neural network input data such as 
voltage, current or temperature. The solar irradiance 
sensors are not needed. The electrical current, voltage 
and temperature of PV panels are easily measurable 
variables with affordable sensors. The neural network 
model’s input data were obtained from computer 
simulations of the PV panels at wide range of solar 
irradiance and temperature values. The exact method 
of generating electrical current and voltage values for 
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