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Resume
Theoretical identification methods for complex industrial control objects 
give very cumbersome and complex mathematical relations, the use of 
which for practical purposes is not constructive. In this regard, methods 
for obtaining mathematical models based on experimental data have now 
become the main focus of identification theory. In this paper is described the 
method of identification of industrial control objects developed according to 
their acceleration characteristics. The structure of the object under study is 
determined by the type of amplitude-phase frequency response and dynamic 
parameters are determined by experimental data. The high adequacy of 
the method is confirmed by similar studies on known (reference) models. 
The scientific novelty of the work consists in development of a new method 
for identifying complex industrial control objects by their acceleration 
characteristics.
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This paper describes the developed methods for 
adequate identification of complex industrial controls 
s  based on the results of an active experiment 
(acceleration characteristics).

2	 The definition of objects equations by curves 
of acceleration

To obtain the equations of objects, an experiment 
is used, which consists in measuring and registering 
one or more transients. These processes correspond 
to particular solutions of the desired differential 
equation. Two types of experiments are most widely 
used in automation: removal of acceleration curves and 
removal of frequency characteristics. In the first case, 
the registered partial solution of the desired equation 
is the object’s response to a  standard step change in 
the input value, which is used to determine the object’s 
equation. In the second case, not one particular solution 
is registered, but several. These solutions are steady 
fluctuations in the output value of the object, forced 
by artificial periodic fluctuations of the input value at 
various fixed frequencies. These particular solutions - 

1	 Introduction

Obtaining models based on observations and 
studying their properties is essentially the main content 
of science. These models may be more or less formalized, 
but they all have the main feature that they link 
observations into a  general picture. The problem of 
obtaining adequate mathematical models of dynamical 
systems, based on observations of their behaviour is the 
subject of identification theory. The world around us 
consists entirely of dynamic systems, so knowledge of 
identification methods is crucial.

At present, with increasingly high requirements for 
management processes in various fields of engineering 
and technology, identification issues are becoming 
extremely important, since it is impossible to ensure the 
high-quality management of a system if its mathematical 
model was not known with sufficient accuracy.

Defining the system characteristics is dual to system 
management tasks since one cannot manage a system if 
its characteristics were unknown. Knowledge of the 
mathematical model before starting the management 
process significantly affects the effectiveness of its 
implementation [1-2].

https://orcid.org/0000-0001-5028-8143
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one, then this method of equating the ordinates of the 
analytical solution and the experimental solution; gives 
incorrect ai and bi. If n taken large, then this should not 
represent a  problem, since the extra coefficients will 
turn to zero. A priori, the order of the object’s equation 
is determined by the number of concentrated containers 
in the object [5-6].

2.1. 	Method for identifying the first-order object 
using an exponential acceleration curve

Figure 1 shows the acceleration curve y(t) of a single-
capacitive linear object. At a moment in time t0 = 0 input 
quantity x changed jumped to a units.

It is necessary to determine numerically the 
mathematical model of the object.

The required equation has the form

T
dt
dy

y Kx+ =  or 
X p
Y p

Tp
K
1= +

^
^
h
h 	 (4)

and you need to define constants T and K.
First, an analytical expression is found for the 

solution of the equation under the given conditions. 
This solution will contain constants T and K. The 
resulting acceleration curve is a graphical solution, then 
comparing the graph with its analytical expression, the 
constants of this analytical expression are determined. 
The general form of the solution for conditions y = 0 at  
t = 0 and x = a at t > 0 is [7]:

y t K a e1 T
t

$ $= + -^ _h i .	 (5)

In principle, it is enough to take a  couple of any 
points from the graph, substitute their coordinates into 
the solution and then from the two obtained equations 
calculate T and K. However, these equations are 
transcendental:

y t K a e

y t K a e

1

1

T
t

T
t

2

1
2

1

$ $

$ $

-

-

-

-

^
^

_
_

h
h

i
i4 	 (6)

and to calculate their roots K  and T is difficult. 

the frequency characteristics of the object - represent 
the initial material for the subsequent finding of the 
equation [3].

If an active experiment cannot be applied on an 
object, then the statistical dynamics methods are used 
without using artificial influences on the object [4].

For a linear operator, equation of the form

,

a x a x x

b x b x b x

n n

m m
m

0 1
1

0 0 1 0
1

0

$ $

$ $ $

f

f

+ + + =

+ + +

-

-
	 (1)

where n > m; x, x0 - output and input of the object 
solution with zero initial conditions and abrupt change 
in input X 0, can be written analytically, as a function of 
time and coefficients:

x = xcm (t, a0, a1,…, an-1, b0, b1,…,bm);	 (2)

and vice versa, if the order of the object Equation (1) 
is known and the reaction is obtained experimentally  
xcm (t) to a step change in input, then you can calculate 
n + m + 1 coefficients ai, bi  (1). For this, the analytical 
solution is equated x(t) in  (2), in which the coefficients 
appear ai and bi and reaction x tcm

1 ^ h  at different times 
, , ,t t i m n1 2 1i f= = + +^ h . The result is a  system 

of m + n + 1 equation with unknown coefficients ai, bi:

, , , , , , , , ,

, , , ,

x t a a a b b b x t

i n m1 2 1

cm i n m cm i0 1 1 0 1f f

f

=

= + +

- l^ ^h h
	 (3)

from which the desired coefficients are calculated. In this 
way n + m + 1  discrete ordinates x tcm

1 ^ h  acceleration 
curves allow m + n + 1  unknown coefficients. Different 
variations of this idea are possible, up to the use of other 
types of reaction. One can take an excess number of 
ordinates and apply the least squares method.

Knowledge of the order of the object Equation 
(1) is essential here. The analytical form of solutions 
of Equation (2) is different for equations of different 
orders and if the a priori order n is less than the actual 

Figure 1 For definition of the first-order object model along the acceleration curve
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previous one, one obtains a series of values for q:

;

;

;

q y y
y y

q y y
y y

q y y
y y

1
1 0

2 1

2
2 1

3 2

3
3 2

4 3

= -
-

= -
-

= -
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_

`

a

bbbbbbbb
bbbbbbb

	 (14)

						    
etc.

These numbers differ from one another due to 
experimental measurement and registration errors y(t).

More accurate is the average value, which gives 
the arithmetic mean qr  from the calculated individual 
values qi. Then the updated time constant Tr  is 
determined from the expression

ln
T

q
tT=-r
r

.	 (15)

Similarly, according to the known qi, individual Ki 
are determined as:

;

;

;
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Then the arithmetic means Kr  of K1, K2, K3 is K.

2.2	 Method for identifying a second - order object 
with a monotone s-shaped acceleration curve

Figure 2 shows the acceleration curve of the object 
described by the second-order equation:

T T
dt
d y

T T
dt
dy

y K x1 2

2

1 2$ $ $ $+ + + =^ h .	 (17)

Constants T1, T2 and K, can be calculated if it is 
known that the perturbation at the input was single  
x = a = 1 at t > 0.

As in the previous case, at the beginning, you should 
write the solution to the equation in general form [10].

Let the general form be, [4]

.y e K at C e Ctotal T
t

T
t

1 2 21$ $ $= + +- -^ h 	 (18)

In this case, it is necessary to determine five 
unknowns (K, T1, T2, C1, C2). One can reduce the number 
of unknowns to three (K, T1, T2,).

For this, from the initial conditions y = 0; 
dt
dy

0=  
for t = 0 the arbitrary constants are defined:

;

;y e

y C e C e

C e C K a

T T
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from 

Therefore, one can apply the following technique. In the 
steady state, is y (t) = k . a, therefore, the ordinate 
of the asymptote tends to y, what makes it possible to 
determine K by simple division by a, i.e.

K a
b= .	 (7)

To calculate T, the solution is differentiated with 
respect to time:

e
dt
dy t

K a T
1

T
t

$ $ $= -^ h
	  (8)

and set t to zero

lim
dt
dy

K a T T
b tg1

t 0
$ $ a= = =

"
,	 (9)

where α is the angle of inclination of the tangent drawn 
to the graph y(t) at t = 0. Therefore, 

T tg
b
a= .	 (10)

Thus, T is numerically equal to the length of the 
tangent within the range of the origin of coordinates 
to the point of its intersection with the mentioned 
asymptote.

This solution is the simplest, but not accurate, since 
it is difficult to indicate the ordinate of asymptote b. This 
solution uses only the beginning and end of the graph, 
while all the intermediate points are dropped from 
consideration, [8-9].

Now is considered a  more accurate technique. 
The graph is broken equidistant to the interval ∆t for 
ordinates y0, y1, y2 etc. For these points, according to 
the solution of Equation (5) can be written

;

;

;
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etc.

The previous equations are subtracted from the 
following ones in pairs:

	 ;

;
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etc.

For brevity, e T
tT

-  is denoted as q, then, one can write:

;

;

;

y y K a q

y y K a q q

y y K a q q q
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etc.

Dividing each subsequent of these equalities by the 
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are rewritten as

;

;

;

;

;

.

y A A A

y A A A

y A A p A q

y A A p A q

y A A p A q

y A A p A q

p q
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1 2 3

1 2 3
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	 (23)

We will count the numbers 1, p and q roots of the 
cubic equation. Let the first line be multiplied by B3, the 
second by - B2, the third by - B1, the fourth by - 1 and 
add them, then the right-hand sides add up to zero, so 
one gets, [6]:

B B B 03
1

2
2 3$ $m m m+ + + = .	 (24)

y B y B y B 00 3 1 2 2 1$ $ $+ + = .	 (25)

Then the same is done with the following four lines:

y B y B y B y 03 2 11 2 3 4$ $ $+ + + = .	 (26)

The next four lines will give

y B y B y B y 02 3 3 2 4 1 5$ $ $+ + + = .	 (27)

In these three equalities, the ordinates yi, are 
known from the acceleration curve and the constants B1, 
B2, B3 are the sought for ones. Having found them, one 
should then calculate the roots of the cubic equation:

; ;p e q e1 T
t

T
t

1 2 31 2m m m= = = = =
T T

- - ,	 (28)

i.e.

ln
T

p
t

1
T=-  and 

ln
T

p
t

2
T=- .	 (29)

From any equation of system of Equations (23), 

;
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The desired particular solution is obtained in the 
form

.y t k a
T T
T

e

T T
T

e

1 T
t

T
t

2 1

1

1 2

2
2

1

$ $
$

$
=

+ - +

+ -

-

-

J

L

KKKKKKKK
^

N

P

OOOOOOOO
h 	 (21)

Now, in principle, it is sufficient to take the 
coordinates yi, ti, three arbitrary points from a  given 
graph, substitute them three times into the solution 
and from the three equations obtained in this way 
find the roots k,  T1, T2. However, these equations are 
transcendental and the roots are difficult to calculate, so 
it is more convenient to use the following mathematical 
technique [11].

To do  this, the graph y(t) is split equidistant to 
interval ∆ t for ordinates y0, y1, y2 etc. and one then 
writes:

;

;

;

;
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	 (22)

etc.

By designating ; ;A K A T T
K T

1 2
2 1

1$= =
-

; ;A T T
K T

p e p eT
t

T
t

3
1 2

2
21

$
=

- = =
T T

- -  these equations 

Figure 2 For definition of the second-order object model with a monotonic acceleration curve S - figurative
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and substitute the numeric values

. . .k0 31 1 2 1
1 0 37 1 2

2 0 61$ $ $= + - + -
b l ,

to get

.k 2 07= .

2.3	 Method for identifying the second-order 
object with an oscillatory acceleration curve

Equation of the object is defined according to the 
reaction of the output ∆θ (t) (Figure 3) for the abrupt 
change in the input value v to the value v = a, m/min;  
∆θ (t) - temperature difference in the last suction 
chambers, v - belt speed [7].

The acceleration curve has an oscillatory shape and 
it can be assumed that the sought equation is of the 
second order with complex roots [9]:

.
dt
d

dt
d

K

2

2

1 2 1 2

1 2

$ $ $

$ $ $

T T Ti c c i c c i

c c y

- + + =^ h
	 (31)

It is necessary to calculate constants K1 2$ $c c .
This equation is the same as in the previous 

case, only the designation of the constants is changed: 

, TT
11

1 2
21

c c=- =- , since the time constant here, 

in the case of an oscillatory system, has no physical 
meaning. The equation of the oscillatory system is 

except for the first, it is necessary to calculate K.
To increase the accuracy, one cannot take only six 

initial ordinates, but more than average of the results.
In essence, this method is an approximation of 

a given graph by the sum of exponential terms [12].
Next is presented a  numerical example. Taking  

= 1 min, six ordinates on the acceleration curve are 
measured (Figure 2) (Table 1).

From equations

0 · B3 + 0.31 · B2 + 0.8 · B1 + 1.21 = 0;

0.31 · B3  + 0.8 · B2 + 1.21 · B1 + 1.21 = 0;

0.8 · B3  + 1.21 · B2 + 1.5 · B1 + 1.7 = 0;

one calculates B1 = –1.97; B2 = –1.19; B3 = –0.222.

Then, one can find the roots of the cubic equation: 
; . ; .p q1 0 37 0 611 2 3m m m= = = = = . This is relatively 

easy to do, since one root is known in advance. 1m=^ h . 
Then one finds:

.
,

.
.

ln ln
min

ln ln
min

T
p
t

T
p
t

0 37
1 1

0
1
61

2

1

2

T

T

.

.

=- =-

=- =-

To calculate K, take one of the lines, except the first, 
of system in Equation (19), for example, the second:

,

y A A p A q

K a T T
K a T

p
T T
K a T

q1

1 1 2 3

2 1

1

1 2

2

$ $

$ $
$ $

$
$ $

$

= + + =

+ - + -
b l 	 (30)

Table 1 Experimental values

t MIN 0 1 2 3 4 5

y(t) 0 0.31 0.80 1.21 1.5 1.7

Figure 3 For definition of the second-order object model with an oscillatory acceleration curve
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. . ;

. . . ;

. . . .

B B B
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B B B
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69 84 3 79 8 71 1 0

3 2 1

3 2 1
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$ $ $

$ $ $
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+ + + =

+ + + =

+ + + =

From that one calculates B1 = -1.1654; B2 = 1.12; 
B3 = - 0.366 and gets the following cubic equation:  
λ 3 - 1.654 λ  2 + 1.12 λ - 0.366 = 0, the roots of which are 
then calculated (one root λ 3 = 1 is known in advance):

. . ; . . ; .j j0 327 0 509 0 327 0 509 11 2 3$ $m m m= + = - =

The complex roots 1m  and 2m  are represent ed in 
an exemplary form:

; .e e. . . .j j
1

0 5 1 0 0 5 1 0
2m m= =$ $- + - -

Next, the constants γ1 and γ2 are determined as:

. .

. . ;
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	 (36)

It remains to calculate the static transfer ratio K. 
This can be easily done by substituting the coordinates 
of an arbitrary point of the acceleration curve and the 
calculated constants α and β. Take for example the point 
t = ∆t = 5 min, .t 29 31T T Ti i= =^ h :

cos sinK e t t1 1 t$ $ $ $Ti b
b
a b= + - +a b l; E  or

. . .
. .cos sinK e29 3 1 1 0 2 5 0 2
0 1 0 2 5.0 1 5$ $ $ $ $ $= + - + -$- b l: D

where one finds K = 70 deg/(m/hour).

The required numerical equation of the vibrational 
object will have the form:

. . .
dt
d

dt
d0 2 0 05 0 05 702

2

$ $ $ $
T T Ti i i y+ + = ,	 (37)

where ʋ - m / hour; °CTi- ; [t] - min.

The natural frequency of the object is

.0 2240 1 2$~ c c= = rad/min;

And the damping factor is 

.

. .2 2 0 234
0 2 0 45

0

1 2

$ $f ~
m m

=
- -

= = .	 (38)

When this technique is extended to the higher-order 
systems, the general scheme of the method remains 
similar.

usually written in the form 

dt
d

dt
d K w22

2

0 0
2

0
2$ $ $ $ $ $

T T Ti f ~ i ~ i ~ y+ + = ,	 (32)

where f  is the damping coefficient; 0~  is the natural 
frequency of the system.

This shows the connection between the physical 
constants , 0f ~  and numbers ,1 2c c . The latter were 
introduced for the convenience of calculations.

Using the results of the previous method, one can 
immediately write the solution to the equation:

t
K a

eK a
K a

e tt

1 2

2

1 2

2 11$
$ $

$
$ $

$Ti c c
c

c c
c

= + - + -
c c^ h .	  (33)

Since the control object has vibrational properties, 
the method of calculating constants used in the previous 
task will result in non-real numbers 1c  and 2c , i.e. 
complex

; .j j1 2c a b c a b= + = - 	 (34)

Turning to the real quantities, the form of writing 
the solution must be accordingly transformed according 
to the Euler formula; it corresponds to the addition of 
two harmonics.
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In principle, one could take the coordinates of the 
three arbitrary points of their graph tTi^ h , putting 
them in the solution, calculate the real roots from the 
three equations for α, β and K. However, since the 
equations turn out to be transcendental, it is very 
difficult to solve them and therefore it is more expedient 
to apply the technique considered in the previous 
problem [13].

For this, from the acceleration curve one takes six 
equidistant to the interval ∆t = 5 min, ordinate:

; . ; ; . ;

. ; . .

0 29 3 69 84 3

79 8 71 1

0 1 2 3

4 5

T T T T

T T

i i i i

i i

= = = =

= =

The system of equations is composed for determining 
the coefficients of the intermediate cubic Equation (21)



M E T H O D S  F O R  I D E N T I F I C A T I O N  O F  C O M P L E X  I N D U S T R I A L  C O N T R O L  O B J E C T S  O N  T H E I R . . . 	 B245

V O L U M E  2 4 	 C O M M U N I C A T I O N S    3 / 2 0 2 2

acceleration characteristics are obtained (the object’s 
response to a  step input action), which, for the 
stable linear objects have one of the following types: 
exponential, S-shaped, or oscillatory. The shape of 
the acceleration curve determines the structure of 
the object and its dynamic parameters (transmission 
coefficients, time constants, delay time) are found by 
processing the acceleration curve using the special 
mathematical techniques. For example, a  sequential 
connection of inertial links (an inertial link of the 2nd 
order) always gives an S-shaped Transition process. 
Therefore, if an unknown object of research gives an 
S-shaped acceleration curve, then its mathematical 
model can be identified as an inertial link of the 2nd  
order.

Similar conclusions can be drawn for objects with 
other types of acceleration characteristics.

3	 Conclusion

The article analyses the methods of determination 
for industrial control devices by the type of amplitude-
phase frequency response and substantiates their 
complex mathematical relations ccording to the data 
of an active experiment with the means of obtaining 
acceleration characteristics.

In this paper are developed the methods for 
identification of industrial control objects. Using 
the method of statistical dynamics, the frequency 
characteristics of an industrial facility are determined.

Acceleration indices of the analyzed control object 
are converted to inertial link of the first order. The result 
is a mathematical model of an industrial control object 
in the form of a transfer function.

According to the data of an active experiment, 
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