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Resume
With an increasing number of electric vehicles, their impact on electrical 
power systems is starting to be substantial. High deployment of these 
vehicles can even bring issues such as overloading the power transformers 
and power lines or loss of stability in the power system. Therefore, a suitable 
model, able to represent large groups or fleets of electric vehicles, is needed 
to prepare measures that can prevent these problems. The main contribution 
of this paper is the definition of a charging model representing a fleet of EVs 
using partial differential equations. This new approach enables meeting the 
accuracy of the commonly used battery charging models while significantly 
decreasing required computation times as shown in simulation results.
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is the topic of electric vehicle charging. On the one hand, 
it is necessary to build more charging stations with the 
growing number of EVs and on the other hand, it is 
necessary to consider increased electricity consumption. 
From a global point of view, it is an uncontrolled load 
that is constantly changing and thus the necessary 
measures need to be taken to prevent overloading of the 
network or loss of a stability [3]. 

To define an appropriate measure to decrease the 
impact of EVs on the grid, it is necessary to predict 
the consumed power of the EVs charging. To be able to 
predict the consumed power of the EVs, the charging 
models and connection/disconnection times of the EVs 
need to be determined. Connection and disconnection 
times of EVs are related to behavior of the vehicle owners 
and this is not addressed in this paper. However, other 
works deal with this topic, e.g. in [4-6]. The model of EV 
charging is based on the battery parameters. There are 
many different types of battery charging models based 
on their application and required accuracy [7]. However, 
most of these models consist of one or more differential 
or nonlinear equations. It increases the computational 
complexity of these models, even more, if a group or a 
fleet of EVs is assumed.

1	 Introduction

Nowadays, there is an accelerating trend of global 
air and ocean temperature growth. The cause of 
this acceleration is the constant growth of society’s 
consumption, which is associated with greenhouse gas 
emissions to the atmosphere. Transportation accounts 
for 30  % of total carbon dioxide emissions in the 
European Union, thereof road transport accounts for up 
to 72 % of these emissions. That is not a negligible share. 
Therefore, it will be necessary to reduce these emissions 
within several years, not only in the European Union but 
at the global level, as well [1]. 

The solution is to reduce mobility or replace internal 
combustion engines with a more environmentally friendly 
alternative. This alternative is usually assumed to be 
the electric motor drive powered by the accumulator. 
However, electric vehicle (EV) production and operation 
also produce carbon oxide emissions, but on a lower scale. 
Electric vehicle emissions are linked mainly with its 
production, especially batteries and emissions produced 
by the power generation for battery charging supply [2].

With deployment of electric vehicles, many questions 
and technical challenges arise. Among these challenges 
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physical-chemical relationships. The basis of the models 
is the use of measured battery data. Empirical models 
are significantly simpler compared to other models; 
computations of these models are simpler and faster. 
They are used to simulate the state of charge and state 
of battery degradation in real time. The disadvantage is 
the lower accuracy of the output values [7, 10].

Empirical models include the universal model 
[10-11], the Nernst model [12], the Shepherd model 
[10] and the model of the equivalent circuit with 
polynomial equations [9].

2.2	 Electrochemical models

Electrochemical models, based on the principle of 
internal phenomena in a battery, are very accurate. 
The electrochemical model of a battery is defined 
by several partial differential equations that describe 
the movements, concentrations of ions, and other 
chemical properties of a battery. The input data to these 
models are obtained by experimental measurement 
[12]. However, electrochemical models are difficult to 
compute, so simulations can take a long time. They are 
used when high accuracy of a battery model is required 
and to simulate battery behavior over a longer time 
horizon [7, 9].

2.3 	Physical, molecular models

Physical and molecular models are extensions of 
electrochemical models. They describe phenomena 
in the electrolyte, chemical changes of the electrodes 
and many other phenomena. They express the 
charging process as a more complex process, taking 
into account the movements of particles in all 
directions. So, these models can be two or even 
three-dimensional. Computations of these models are 
demanding because of the large number of time- and 
space-varying variables described by PDEs. However, 
their accuracy is high and so they are often used as 
reference models. Physical models include a P2D 
porous electrode model, a P3D thermal model, a P2D 
strain and stress model and a P2D population balance 
model. The abbreviations 1D, 2D and 3D after P in 
the model’s name represent the dimensions of the 
model [13].

2.4	 Electric models

These models describe the electrical quantities of 
the battery, i.e. its volt-ampere characteristics. The 
models are based on the data provided by the battery 
manufacturer - nominal capacity, internal resistance, 
voltage, charging current, polarization voltage, the 
amplitude of the exponential zone and inverse time 

Therefore, this work defines a charging model of 
a fleet of EVs as one unit using partial differential 
equations (PDE). A similar model, defined using PDEs, 
was already presented in [8], however, it assumes 
controlled charging or discharging of EVs. The presented 
model is more general and can be used to predict 
the consumed power of the charging EVs even if the 
charging is uncontrolled. Moreover, the comparison of 
the presented model with the commonly used electrical 
model for battery charging was carried out in this  
paper. 

So, this paper is focused on definition of a charging 
model of a fleet of EVs, able to predict the consumed 
power of charging EVs and demonstrate its properties. 
Moreover, the defined model can be scaled from small 
EV fleets to fleets consisting of thousands or more of 
EVs without increasing the computation times. So, this 
definition of a charging fleet model allows to easily study 
the impact of EV charging on the power network, e. g. 
define hosting capacity for electric vehicles in a specific 
power network or increase in total consumption in a 
specific electric power system.

The contributions of this manuscript are twofold:
•	 a definition of a charging model representing the 

consumed power of a fleet of EVs with uncontrolled 
or controlled charging;

•	 a definition of a charging model that is able to 
scale from small EV fleets to large ones without 
increasing the computation times.
The rest of the paper is organized as follows. Section 

2 presents the commonly used charging models and 
specifically the electric model that is later used for 
comparison with  model defined in this paper. Section 3 
defines the model of the EV fleet described with PDEs. 
The simulation of the created model and the comparison 
with the electric model are carried out in section 4. 
Section 5 concludes the paper and suggests future work.

2	 EV charging models

The basis of the EV charging model is the battery 
charging model. There are many battery models and 
each has its advantages and disadvantages, so it is 
necessary to choose a suitable model to represent EV 
charging [7]. According to [9], medium-term battery 
models can be divided, according to different modeling 
perspectives and techniques, as follows [9]:
•	 empirical models.
•	 electrochemical models,
•	 physical, molecular models and 
•	 electric models - equivalent circuits models.

2.1	 Empirical models

The principle of operation of these models is to 
describe the battery charging function without using 
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U U R it OC V $= + .	 (4)

The voltage drop is positive during charging and 
negative during discharging. Since we are examining 
the battery as a whole, it is necessary to convert cell 
voltages Ut, UOC and resistance Rv to battery Upack, UOCekv 
and Rekv as shown in Figure 2 [14].

The EV battery charging takes place in two phases. 
First, it is charged with a constant current, the voltage 
is slowly increased until the limit value is reached. 
The power consumed from the network PAC and the 
power supplied to the battery PDC are determined  
as [14]:

P U iAC C C$= ,	 (5)

P U iDC pack $= ,	 (6)
 

where UC is the network voltage (V) and iC is a current 
consumed from the network (A).

Since Upack is dependent on the SOC of the battery, 
then PAC is dependent on the SOC, as well. The power 
consumed from the network can be expressed [14]:

P SOC U i SOCAC C C$=^ ^h h ,	 (7)

P SOC U SOC iC packD $=^ ^h h ,	 (8)
 

while the relationship between the power consumed 
from the network and the charging power delivered to 
the battery is [14]:

P PDC AC$h= ,	 (9)

constant of the exponential zone. Such a model is 
described in detail as it is used for comparison with the 
charging model of a fleet of EVs defined in this paper.

The basis of the battery model is a battery cell 
model and its equivalent circuit, as shown in Figure 1. 
This circuit consists of a controlled voltage source UOC in 
series with the internal resistance of the battery cell Rv. 
The battery voltage is denoted by Ut [14].

The state variable of this model is the state of 
charge (SOC) of a battery, which is given by [14]:

SOC
Q
Q
nom

= ,	 (1)
 

where Qnom is a nominal capacity of a battery (Ah) and Q 
is a current capacity of a battery (Ah).

Neglecting losses in the battery during charging, 
one can express the time change of the state of charge 
as [14]:

dSOC
dt Q

i
nom

= 	 (2)
 

where i is a charging/discharging current (A).
The open-circuit voltage UOC is expressed as [14]:

U Q
Q Q

U
K Q

A eOC
nom

K
nom B Q$

$= -
-

+ $-^ ^h h ,	 (3)

where UK is a constant battery voltage (V), K is a 
polarization voltage (V), A is the amplitude of the 
exponential zone (V) and B is an inverse time constant 
of the exponential zone (Ah-1).

Then, the battery cell voltage Ut can be easily 
derived by adding the voltage drop due to the internal 
impedance Rv [14]:

Figure 1 Equivalent circuit of a battery cell

Figure 2 Equivalent circuit of a battery
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is expressed in per unit (pu) and is represented by the 
variable x. The number of EVs that are in the charging 
state, with SOC equal to x at time t, is represented as 
u(x,t). The number of EVs that are in the idle state with 
SOC equal to x at time t is denoted as v(x,t) [16-17]. 

The EV transition between individual discrete 
states is determined by the variable σ. In the upper part 
of Figure 5, the EV transits from the idle state to the 
charging one is given by the variable σi →c. At the bottom 
of Figure 4, σi →po determines the EV movement between 
the idle state and the state when the EV is disconnected 
from the charging station (EV arrival to/departure from 
the charging station) [16-17].

After connecting the EV to the charging station, 
the model assigns the EV automatically into the idle 
state. If its SOC is lower than 1, the EV is transited 
to the charging state. If SOC becomes 1, which means 
the EV is charged, the EV goes into the idle state 
unless it is disconnected from the charging station. 
By disconnecting from the charging station, an EV 
goes into an undefined driving state when the EV is 
being discharged. This condition is not modeled in the 
simulation, it is considered that EVs can be randomly 
connected and disconnected from the charging station 
[16-17].

3.1 	Derivation of the model

The basis of the aggregated model is the EV battery 
charging model that was described in section 2.4. In this 
model, for simplicity, the SOC is denoted by xi, where i 
expresses the ith EV [16-17]. 

The required energy for the EV fleet charging at the 
time t is given by [16-17]:

where h  is a charger efficiency (-).
In the case of constant voltage charging, it is not 

possible to control the PAC or iC.  The only controlled 
quantity is the voltage Upack, which is kept at a constant 
value until the SOC level of 100 % is reached.

The comparison of the accuracy and computation 
time complexity of the presented types of models is 
shown in Figure 3.

3 	 Charging model of a fleet of EVs

The charging of one EV can be described by different 
models, as shown in section 2. However, modeling a 
fleet of several thousand EVs separately using these 
equations would represent a large computational burden. 
However, the relations describing the EV fleet can be 
simplified by an aggregation method [15]. A model using 
the aggregation method expresses a group of EVs as a 
whole and describes it by one or more PDEs. The EVs in 
such models are expressed as functions of their current 
SoC and time [16-17].

The simulation of the EV fleet is expressed using 
the two interconnected continuous PDEs. However, the 
EV fleet can acquire two discrete states [16-17]: 
•	 charging, when the EV is charging and so represents 

a load for the grid, 
•	 idle, when the EV battery is already fully charged 

but is still connected to the grid.
Individual discrete states are expressed using 

hyperbolic PDEs. These PDEs are interconnected using 
transition variables describing the transition of the EVs 
between individual discrete states, from the state of 
charging to the idle state and vice versa. The dynamic 
of these states is shown in Figure 4. The SOC of an EV 

Figure 3 The comparison of the presented types of battery charging models
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charged in an infinitesimal segment between x and 
x+dx is considered. The flow of charged EVs at time t 
with SOC x is expressed through the function F(x,t) as 
[16-17]:

, , ,F x t q x t u x tc $=^ ^ ^h h h ,	 (12)

, , ,F x dx t q x dx t u x dx tc $+ = + +^ ^ ^h h h ,	 (13)
 

where Equation (12) describes the incoming flow of EVs 
with SOC corresponding to x at time t and Equation (13) 
defines the outgoing flow of EVs whose SOC is already 
larger and corresponds to x+dx at a certain time t.

An additional increase in the number of EVs in this 
segment (dx) can also be given by the transition of EVs 
with SOC equal to x at time t, which come from the 
idle to the charging state, denoted by σi →c(x,t). Figure 5 
shows the approximate amount of total number of EVs 

,P t P u x tc ACx 0

1

1
$=

=
^ ^h h| .	 (10)

The aggregation method can be used to express the 
PDE since dx/dt is linearly proportional to the charging 
power. In the model, the parameters of the battery 
and the efficiency of the charger η are assumed as 
homogeneous in the EV fleet. 

The amount of EVs that are charged is denoted 
by u(x,t) and their SOC is x(t). The charging rate at x 
is noted as qc(x,t). Charging rate qc(x,t) is given by the 
change of the SOC over time, which is expressed by 
the battery charging model as in section 2.4. Simply, 
it can be expressed as [15, 17]:

,q x t
dt
dx

c =^ h .	 (11)

To derive the model, the dynamics of the EVs 

Figure 4 The dynamic of the two defined discrete states

Figure 5 The number of EVs in the charging state with SOC between x and x+dx
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used to solve this model.
The Lax-Wendroff method is a numerical method, 

so it finds an approximate solution that solves the 
hyperbolic PDEs. It shows good accuracy and in the case 
of the second-order equations, it has an error rate of less 
than 3 %. The resulting equation of this method has the 
form of a Taylor series. 

Using this method, the resulting equation expressing 
the number of EVs in the charging state is given as [16-
17]:

.
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In Equation (17), uj
k expresses how many EVs have 

a certain SOC corresponding to step j and time step k in 
the charging state [8, 16]:

,u u j x k tj
k T T= ^ h .	 (18)

Variable a in Equation (17) denotes the constant 
charging rate. The charging rate is the same throughout 
the whole charging cycle. ∆t determines the time of the 
discretization step of the function and ∆x expresses the 
discretization step of SOC. Equation (17) thus defines 
the change in the number of EVs with SOC j at time 
k+1, based on the values at time k, the amount of EVs 
with j times ∆x SOC and the amount of EVs with the 
surrounding values of SOC at j+1 and j-1 steps [8, 17].

The differential equation expressing the number 
of EVs in the idle state is derived only with respect to 
time and can therefore be solved numerically without 
modifications. The equation defines the number of 
EVs in the idle state in the next time step, which is 
determined by the number of vehicles in the idle state 
in the current time step and the transport variables 
σ. i po j

kv "  is the number of EVs moving from the idle 
state to the charging state in the current time step k 
and i c j

kv "  represents the number of EVs moving from 
the idle state to the driving state (disconnection from 
the charging station) in the current time step. The 
mathematical notation of Equation (16) in discretized 
version is [8]:

v vj
k

j
k

i po j
k

i j
k
c

1 v v= - -" "
+ .	 (19)

Using Equations (17) and (19) and conditions set in 
section 3.1, the simulation model was created in Matlab 
R2020b. The simulation of EV fleet charging represents 
charging with constant power. From the model, it is 
possible to determine the time for EVs to charge, the 
number of charging vehicles at a certain time t and 
the number of EVs in the idle state at a given time. An 
important function of the model from the electrical grid 
point of view is the prediction of the consumed power 
from the grid for the fleet charging. The input variables 
to this model are the number and type of EVs in the fleet 

whose SOC at time t is between x and x+dx [16-17].
In an infinitesimally small time interval dt, the 

number of charged EVs can be expressed according to 
the conservation law as [8, 16-17]:

, ,, ,

, , , .

u x t dt x tu x t dx q x t u dt

q x dx t u x dx t dt x t dt

c

c i c

$

$ v

+ - = -

- + + + "

^
^

^
^

^ ^
^

h
h

h
h

h h
h

6 @
	 (14)

If dt → 0 and dx → 0 are considered, then the PDE 
representing the time change of the number of EVs in 
the charging state is given by [8]:

, , , ,t
u x t x q x t u x t x tc i c$2
2

2
2 v= + "^ ^ ^ ^h h h h6 @ .	 (15)

Equation (15) can be used to determine how many 
EVs have a certain level of SOC or how many EVs 
consume energy from the network, i.e. they are being 
charged. 

Similarly, one can express the PDE determining 
the number of EVs in the idle state according to the 
following equation [16-17]:

, , ,x
v x t x t x ti po i c2
2 v v=- -" "^ ^ ^h h h .	 (16)

The number of EVs with SOC equal to x at time 
t in the idle state depends on how many EVs are 
currently connected or disconnected to the charger 

,x ti pov "^ ^ hh  and from the number of EVs that was 
transited from charging state to idle state ,x ti cv "^ ^ hh  
and vice versa. 

For the correct function of the model, it is necessary 
to determine the PDE boundary conditions representing 
the EV charging dynamics, i.e. for x = 0 at time t [16-17]: 
•	 u(0,t) = 0, meaning SOC of EV cannot be lower than 

0. 
It is also important to determine the condition for 

the limit value of charging rate qc(x,t) when the EV is 
already charged [16-17]: 
•	 qc(1,t) = 0, after reaching x = 1, the battery is not 

charged any further. 
The other conditions are defined within the model. 

If x is less than 1, then EVs are connected to the charger 
and they are in the charging state, until x does not take 
on the value of 1. EVs with x = 1 are not charged any 
further but are transited into the idle state [16-17].

4	 Results

4.1 	Simulation model

The mathematical model of EV fleet charging 
dynamics defined in the previous section consists of 
hyperbolic PDEs. The computation of these hyperbolic 
PDEs can be very complex. However, if a charging 
rate qc(x,t) is assumed to be constant over time, the 
quite simple Lax-Wendroff numerical method can be 
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•	 200 vehicles with initial x corresponding to 65 % 
SOC; 

•	 200 vehicles with initial x corresponding to 80 % 
SOC.
The results from the simulation show the charging 

process of individual groups of EVs in Figure 6. The SOC 
of all groups increases over time and the duration of the 
charging process depends on the initial SOC. 

After reaching x = 1, the vehicles are automatically 
transited into the idle state, as shown in Figure 7. The 
gradual increase of vehicles in the idle state, as soon 
as individual EV groups reach full SOC can be seen in 
Figure 6. Figure 6 also shows that EVs with the lowest 
initial SOC (25 %) are fully charged after 699 minutes. 
That corresponds to the time when the last group of Evs 
is added to the idle state (Figure 7).

The total consumed power is a function of the 
number of charging vehicles and the charging rate. 
So, the total consumed power at the time t is the sum 
of power consumed by all the Evs in the charging 
state. However, the number of vehicles in the charging 
state is constantly changing depending on their actual 
SOC. The power curve, therefore, evolves over time as 
shown in Figure 8. The curve corresponds to the initial 
condition of connecting all the vehicles to the charger 
and so their location in the charging state of the model. 
Therefore, the power takes on a value of 3700 kW, 
i.e. the power of the charger 3.7 kW multiplied by the 
number of vehicles 1000. As the Evs are charged and so 
transited from the charging to the idle state, the power 
gradually decreases. In addition, the trends in Figure 
8 can be compared to Figures 6 and 7, where the EV 
group with an initial charge of 25 % reaches x = 1 after 
699 minutes from the simulation start. The total power 
consumed at this time will drop to zero because all the 
vehicles are already fully charged and are in the idle  
state.

with their initial SOC and defined constant charging 
rate.

4.2 	Testing of the simulation model

To test the created simulation model, the following 
input values were used. We chose the maximum number 
of EVs in the fleet equal to 1000, with a nominal battery 
capacity of 50 kWh. Charger efficiency is assumed 87 %. 
The simulation time is set to 800 minutes. The length of 
time is chosen so that all the EVs have time to charge 
with charging power equal to 3.7 kW.  The charging rate 
per time unit dt is then determined as:

. .dx q
Q
P
60 50

3 7 0 87 1 073 10c
n

nab 3

$
$ $ $

$
h

= = = = - .	 (20)

While x changes in the range 0 to 1 with a step dx, 
time takes on values from 0 to the selected simulation 
time with a dt step set to 1 minute.

In addition, it is important to determine the limits 
for Equations (17) and (19). If the SOC is lower than 1, 
the EV is automatically transited to the charging state 
from the idle state after being connected. If SOC is equal 
to 1, EV is transited into the idle state. 

The initial conditions for these discrete equations 
need to be determined as well. In the idle state, there 
are no EVs in the initial state. All the EVs connected to 
the charging station are already in the charging state 
at the beginning of the simulation and they are divided 
into groups as follows: 
•	 300 vehicles with initial x corresponding to 25 % 

SOC;
•	 200 vehicles with initial x corresponding to 35 % 

SOC;
•	 100 vehicles with initial x corresponding to 50 % 

SOC; 

Figure 6 Charging process of EV groups within the fleet
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1 has been chosen. The charging rate of the charging 
point was assumed 22 kW. The manufacturer of a given 
EV type only defines the charging time for the maximal 
charging power of the EV. Therefore, we used an online 
calculator [18] that calculates the charging time of 
the selected EV as a function of the required charging 
energy and charging rate. The computed charging 

4.3 	Comparison of the presented model  
to electrical model of battery charging 

In this section, the EV fleet charging model defined 
using PDEs and the electric model of battery charging 
described in section 2.4 are compared. For such a 
comparison, the EV with parameters presented in Table 

Figure 7 The number of EVs in the idle state

Figure 8 The consumed power curve

Table 1 Evs parameters 

EV model Nominal battery capacity Charging time required for full charging from 20 % SOC by 22 kW charger

Tesla S85 85 kWh 3 hours and 29 minutes (209 minutes)

Table 2 The initial state of charge 

EV 1 2 3 4 5

Initial SOC (%) 20 40 50 60 80
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different initial states of charge is monitored. The initial 
state of charge of individual Evs is presented in Table 2.

The battery charging model from section 2.4 
calculates the battery charging time, current and voltage 
curves. The battery consists of battery cells, which are 
charged evenly in the battery and are assumed to be 
homogeneous. The parameters of the simulated battery 
cobalt blended lithium-ion cell are shown in Table 3.

times of the presented charging model and the one from 
section 2.4 are compared, with the charging time from 
the online calculator presented in Table 1. 

The full charging is represented by the charging 
window between 20 % and 100 % of the nominal battery 
capacity. The calculator has a preset charger efficiency 
value of 90 %, so the simulation models assume the 
same one. The charging process in a group of 5 Evs with 

Table 3 Battery cell parameters 

Parameter Value

Q (Ah) 3.1

UK (V) 3.5

Rv (Ω) 0.01

K (V) 0.025

A (V) 0.2

B (Ah-1) 0.375

Figure 9 The charging characteristics determined by the electrical battery charging model

Figure 10 The charging characteristics determined by the EV fleet model
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and so utilization of this model, to represent charging 
of larger EV fleets, is not efficient. On the other hand, 
the computation time of the model defined in this paper 
is almost the same in both cases since the computation 
of PDEs defining the EV fleet model does not depend 
on the number of EVs. Therefore, this model can be 
computation time efficient for modeling large fleets of 
EVs, while keeping the accuracy of the model commonly 
used for battery charging representation.

5	 Conclusions

Charging many electric vehicles represent 
an increased load on the power grid that changes 
unpredictably over time. Such uncontrolled charging 
of vehicles can cause problems with the stability of the 
grid or overloading of some of its parts. To study these 
impacts and implement measures to prevent them, 
modeling large EV groups charging is important.

Therefore, this paper defines a model suitable to 
represent the charging of the fleet of EVs that can 
vary in size without affecting the computation time. 
Simulation results show that the defined model meets 
the accuracy of the commonly used model representing 
battery charging while decreasing the computation time 
in comparison with these commonly used models.

The defined model can be used in future work in 
an analysis of the EVs’ charging impact on the power 
system as a whole or its parts. Moreover, the model 
can be also utilized for the charging control system 
definition, where the EVs will be transferred between 
the charging and the idle states to meet the consumed 
power threshold or other requirements.
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The Tesla S85 vehicle battery is constructed from 
16 modules connected in series. One module consists of 
74 parallel-connected branches of 6 serial battery cells of 
type 18650. In one module, 444 such cells are connected. 
Based on this, the battery cell model was proportionally 
converted to the battery model. The resulting charging 
characteristics, determined using the electric battery 
charging model, are presented in Figure 9.

For the presented model of the fleet of EVs, it is also 
necessary to determine the discretization step dx the 
EV’s data as:

. .dx q
Q
P
60 85 60

22 0 90 3 8824 10c
n

nab 3

$
$

$
$

$
h

= = = = - .	 (21)

The simulation time was estimated from the 
expected charging time of the vehicle with the lowest 
initial charge according to the time given by the 
online calculator, namely 250 minutes. We kept the 
calculation step dt for 1 minute. The resulting charging 
characteristics are presented in Figure 10.

As can be seen in Figures 9 and 10, the character 
of the charging in both models is quite similar since the 
electrical battery charging model was used as the basis 
for definition of the EV fleet model. However, the charging 
window between 20 % and 100 % is 192 minutes, or 3 
hours and 12 minutes in the simulation of the electrical 
model of battery charging, as shown in Figure 9. The 
reference charging time for this charging window (Table 
1) is 3 hours and 29 minutes. In the EV fleet charging 
model, a full charge from the initial 20 % was achieved 
after 206 minutes, or 3 hours and 26 minutes, as shown 
in Figure 10. So, this second simulation case is closer 
with its charging time estimation to the reference one 
defined by [18] with a difference of only 3 minutes. 
However, the time difference in both models can be 
assumed small enough.

The main difference between the two models is their 
computation time. The average computation times for 
both simulation and for the case of an increase of EVs to 
ten within the fleet are presented in Table 4. As can be 
seen in Table 4, the computation time of the electrical 
battery charging model for 5 EVs in a fleet is much 
higher than the computation time of the EV fleet model 
presented in the paper. With the increase of EVs to ten 
within the fleet, the computation time of the electrical 
battery charging model increases even more. As can be 
seen in Table 4, the increase of the computation time 
is proportional to the increase of the EVs in the fleet 

Table 4 The average computation times 

Number EVs in a fleet Electrical battery charging model EV fleet model with PDEs

5 37.25 s 0.188 s

10 73.68 s 0.180 s
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