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Resume
This work is dedicated to the problem of optimizing the shape of columns 
modelling bridge span subjected to the selected specific load case. Based 
on Hamilton's principle, motion equations and boundary conditions were 
defined. Taking into account the static criterion of loss of stability and the 
condition of constant volume of systems, the values of geometric parameters 
of the analyzed column were determined at which the maximum critical load 
value was obtained. The simulated annealing algorithm was used to find the 
maximum critical force being a function of many variables. Within the kinetic 
criterion of loss of stability, the range of changes in the natural frequency 
of optimized columns as a function of external load was determined. Based 
on the obtained results it was concluded that it is possible to control the 
dynamic properties while improving the stability of the system.
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Changing the shape of the structural elements can affect 
not only the strength, but it can also reduce the weight 
of the structure and thus lower the costs. Including 
nonlinearities in the models increases the quality of 
mapping the actual behaviour of the system - it enables 
a  more accurate study of the behaviour of the system 
during operation. The role of stability and vibrations 
of slender systems has received increased attention in 
recent years, across a  number of disciplines. Physical 
models, similar to those analyzed in this paper, are 
commonly found in constructions (bridge spans) [18-23] 
or in the mining industry (support structures).

A  new approach to the stability studies of non-
prismatic Bernoulli-Euler columns loaded axially was 
proposed in [16]. The described method of rigid elements 
consists of dividing a column into n segments, then each 
of them is additionally divided into k members. Each of 
the segments from the first division can be replaced with 
a rigid, multi-segment joint element (two rigid segments 
connected by a  joint and springs: translational and 
rotating). The research considered double symmetrical 
columns with a  cross-section that change continuously 
and stepwise (multi-segment system). 

1	 Introduction 

The issue of stability and free vibrations plays 
a  significant role in the design and exploitation of 
mechanical devices and civil engineering structures. 
With proper system operation, correctly conducted static 
and dynamic analyzes guarantee that the machine or 
structure will not be damaged at stresses much lower 
than the allowable one. Currently, scientists’ research 
is focused on increasing the strength of structures and 
the possibility of controlling their dynamic properties. 
Among the factors that are analyzed in the context of 
improving the properties of slender systems - devices or 
their parts are, among others:
•	 the possibility of using elastic or piezoceramic 

elements, supporting the systems with elastic 
foundations with different characteristics [1-6] or 
using oscillators [7];

•	 analysis of nonlinearities in the system: geometric 
[7-11], material (physical) [8, 12-14], resulting from 
friction [8];

•	 optimization of the shape of the system [15-17].
The last two factors are of a particular importance. 

https://orcid.org/0000-0002-7475-7925
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2	 Physical model of the system

Figure 1 presents a physical model of the considered 
column in the construction variant of loading heads 1  
and load taking heads 2 with a circular outline (constant 
curvature). Under the follower load, with the force 
directed towards the positive pole (case of specific load), 
the direction of the loading force goes through the fixed 
point O - the centre of the loading and load taking head. 
The parts of the load taking heads are infinitely rigid. 
The columns 3 are rigidly fixed on one side (x1 = 0) and 
they are connected at the free end (xn = l) with the load 
taking head 2. Reduced mass of elements, being a part of 
the load taking head was taken into account in the field 
with the point mass m. 

The method of issue description adopted in this 
paper consists in the division of a  column (Figure 1b) 
into smaller segments (with indexes I  = 1..n)  with 
a  circular cross-section, mass per unit length (rAi) 
and flexural rigidity (EJi), described by length l and 
diameter d, as well as the transverse displacement 
Wi(xi,t).  The optimization of the shape is limited to 
selection of diameters of particular segments of the 
systems at which the maximum critical load value is 
obtained. This assumption causes that the maximum 
value of critical force, which is a  function of many 
variables (diameters and lengths of particular column 
segments) is searched for:

, , , ,P f d d d n
L

max n1 2 f= a k .	 (1)

The problem of stability was also dealt with by 
Li [24-25]. In his works, he analyzed columns with 
a  stepped and continuous change of the cross-section 
along the axis. The research covered the impact of 
various load cases (conservative or tracking), system 
geometry and mounting methods, including support 
by rotational and translational springs, on the value of 
the critical load. The transfer matrix method and the 
finite element method were used to solve the boundary 
problems presented in the works.

An explicit equation for the buckling load value 
of the non-prismatic columns with non-uniform 
distribution of longitudinal forces was developed in [26]. 
Taking into account the Euler dependence on the critical 
load, the authors presented a series of graphs specifying 
the value of the correction factor taking into account the 
type of convergence, the size of the cross-section and the 
method of loading the structure. The maximum recorded 
error, resulting from the comparison of the proposed 
method and analytical calculations, did not exceed 7 %.

This article deals with the issue of stability and 
free vibrations of a  geometrically nonlinear column 
with a  nonprismatic element, modelling the bridge 
support structure. The analysis covered the change of 
the bifurcation load (only the loss of the rectilinear form 
of the static equilibrium was examined) and the change 
of the natural frequency. The shape of the bar with 
a variable cross-section was optimized using a modified 
simulated annealing algorithm. The theoretical and 
numerical studies were experimentally verified.

Figure 1 Physical model of the column a) under follower force directed  
towards positive pole, b) division into segments
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•	 energy of the force P horizontal component:
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Known a priori, the geometrical boundary conditions 
of the considered problem, are:
•	 at the attachment point (x1 = 0):
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•	 continuity conditions
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After application of geometrical dependencies 
between the elements of the head taking the load, 
with the follower force directed towards the pole, the 
following was obtained:
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Considering the Hamilton’s principle in Equation 
(3), after a priori application of the relevant boundary 
conditions in Equations (9)-(11) and after algebraic 
transformations, it was obtained:
•	 differential equations of motion of the considered 

system: 

,

,

,

, ,

EJ
x

W x t

W x t
A

x
W x t

P

t
i n0 1

i
i

i i

i i
i

i

i i
2

2

2

4

4

2

2
2

2
2

2
2

ft

+ +

+ = =

^

^

^

^

^
h

h

h

h

h

	 (12)

•	 natural continuity conditions:
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The value of the critical force Pkr of the optimized 
columns was related to the constant along the length 
L of the flexural rigidity (EJ)pr of comparison columns: 

.
EJ
P L

oc
kr

pr

2

m =
^ h

	 (2)

In the solution of the subject issue, the constant total 
length L, the constant total volume V, constant value of 
the longitudinal elasticity E, as well as optimized and 
relevant comparison (prismatic) columns, are assumed.

In this section, exemplary designations of the 
considered columns have been implemented:
•	 DO(R*) - optimized column subjected to the follower 

force load, directed towards the positive pole with 
a stepwise variable flexural rigidity, with the 
parameter of the loading and load taking head R*;

•	 DP(R*) - the column with a constant at the length 
of the flexural rigidity system (EJ)pr (comparative) 
subjected to load with tracking force directed 
towards the positive pole, with the parameter of the 
loading head R*.

3	 Equations of the boundary problem

Determination of motion equations and boundary 
conditions of the considered systems was conducted 
under the Hamilton’s principle (the principle of least 
action):
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t
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Where T means kinetic energy, V - potential energy, 
t - time, d  - operator of variations.

The kinetic energy T of the considered columns is 
the sum of the kinetic energy of the column and kinectic 
energy of the body of mass m (transverse inertia):
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where Ai - is the cross-sectional area of the i-th segment 
of the optimized column.

The components of the potential energy were defined 
as follows:
•	 flexural elastic energy:
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•	 energy of the force P vertical component:
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,y l y 0II II
1 1|=g g g+ +^ ^h h 	 (24)

.y l y 0III III
1 1|=g g g+ +^ ^h h 	 (25)

Taking into account the Equations (18), (19) and 
(22) - (24) in Equation (16), the following displacement 
equations were obtained:

, .y x k y x i n0 1i
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i i i
II

i
2 f+ = =^ ^h h 	 (26)

The general solutions of Equation (26) were 
described by the function:
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where Dik are integration constants ( l  =1, …, 4).

Based on the solutions of Equation (27) of 
displacement equations and relevant boundary 
conditions in Equations (19)-(25), a system of equations 
was obtained, which in the matrix form, was recorded 
as follows:

G 0sK= 	 (28)

where: D D D D D D D D T
n n nn11 11 11 11 1 2 3 4fK= 6 @  

and Gs means the square matrix of a degree dependent 
on the number of n segments of considered columns.

Thus, the following is obtained:
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The matrix coefficient Fn was recorded as:
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•	 natural boundary conditions at the free end of the 
systems (xn = l):

•	
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where:  / , /k P EJ EJ EJn n
2

1 1|= =g g g+ +^ ^ ^h h h .

4	 Solution of the boundary problem - energetic 
method

Conducting research on optimization requires 
knowledge of the critical load values of the considered 
columns, with the adopted criterion of constant volume. 
To determine the critical load parameter, it is sufficient 
to apply the static stability criterion (energetic method). 
Condition for the existence of a minimum total potential 
energy was recorded in the following form:
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Potential energy of the system (see Equations 
(5)-(7)), after previous separation of variables of the 
function Wi(xi,t), in relation to spatial xi  and time t 
coordinates:

, ,cosW x t y x ti i i i ~=^ ^ ^h h h 	 (17)

has the following form:
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The boundary conditions in Equations (9)-(11), (13)-
(15) after applying Equation (17) are as follows:

,y y0 00I1 1= =^ ^h h 	 (19)
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After applying Equation (34) to relevant boundary 
conditions, the following system of equations was 
obtained:

.G col C C C C C C C C 0D n n n n11 21 31 41 1 2 3 4f =" , 	(36)

The determinant of the matrix of coefficients GD 
equalized to zero is a transcendental equation on the 
neutral vibrations frequency w (within the range of loss 
of the rectilinear form of the static equilibrium) of the 
considered systems, that is:

.G col C C C C C C C C 0D n n n n11 21 31 41 1 2 3 4f =" , 	(37)

6 	 Simulated annealing 
	
The method of simulated annealing consists in 

a heuristic algorithm belonging to the class of non-

The transcendental equation for the critical load 
value is as follows:

.detG 0s= 	 (32)

5	 Solution of the boundary issue - vibration 
method
	
Based on the solution of the boundary issue with 

the kinetic criterion of stability, the range of changes 
in natural vibrations frequency w as a function of 
the external load P of the considered columns was 
determined. For this purpose, Equations of motion (12) 
are taken into account, which, after separating the 
variables with respect to spatial coordinates xi and time 
t (see the Equation (17)), are in the following form:
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The results of Equations (33) are:
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where C il  are integration constants ( l  =1,…,4) and:

Figure 2 A block diagram of the modified method of simulated annealing
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7	 Modified method of simulated annealing 
	
In the method of simulated annealing, apart 

from the change of the value of parameters Q and 
M, an additional modification of the performance of 
the function S(YB) was assumed, which generates a 
neighbourhood result (neighbourhood function). In the 
considered case, the performance of the neighbourhood 
function was changed along with the change of the 
“temperature” parameter (Figure 3).

The applied method of selection of a new shape 
consists in the “transfer” of a certain part of volume, 
described by the coefficient Dv, from a randomly selected 
segment (with the index i) to another segment of 
the column (with the index j), selected also in a 
random manner (Figure 3b). This is done by changing 
the diameters of selected segments (di, dj) into new 
diameters (di’, dj’). The lengths of segments l remain 
unchanged. Thanks to application of such a solution, 
the fixed column volume criterion, adopted in this paper, 
has been met. New diameters of segments are calculated 
from the equations:

, ,d v d d d vd1i i j j iT T= - = +l l^ h 	 (40)

where: i, j !  (0..n) - indices of the segments subjected to 
modifications,  Tv !  (0..1) - volume change coefficient.

The maximum allowable difference between indices 
of segments i j- , the diameters of which (di, dj) are 
changed and the volume change factor Dv (Dv = f(Q)), 
defining what part of the volume of a given segment 
(with the index i) will be transferred to another segment 
(with the index j), are also changed. The segment whose 
volume is increased (diameter dj’) is any segment of 
the column selected in a random manner. The segment 
described by the parameter of the diameter di’, the 
volume of which is reduced, is also selected in a random 
manner, however, in this case some restrictions are 
imposed on the selection. 

deterministic algorithms. This method is a modification 
of the “hill climbing algorithm”. The performance of the 
algorithm requires defining four parameters: the initial 
representation of the result, the generator of random 
changes in the results (neighbourhood function), the 
evaluation function (cost) and the annealing schedule. 
The additional parameter Q called “temperature” is not 
directly related to variables subjected to optimization, 
but it only controls the performance of the algorithm. 
The value of the parameter Q affects only the probability 
of passing from one point in the search space to another 
and is selected in a manner depending on a given 
optimization issue. 

Figure 2 presents a block diagram of the applied 
method of simulated annealing. In the considered 
method, a new solution YN selected by modifying the 
current result YB, is always accepted when an increase 
is obtained in the value of the function of the result 
evaluation defined by Equation (1). Otherwise, the 
acceptance occurs with a certain probability equal to:

,expp
f

a
T
H= -c m 	 (38)

 
where: Df  is the difference of the value of the evaluation 
function defined by the Equation (1) and:

.d d d d d n
L

n n n1 2 2 1fW= - -9 C 	 (39)

The core of the algorithm is the procedure called 
Metropolis, which was used for simulation of the 
annealing process under a given “temperature”Q. In the 
Metropolis procedure, a number of iterations defined by 
the parameter M was performed at the same value of 
the parameter Q. Then, the “temperature” was reduced 
according to the adopted “annealing schedule”, which 
was described by the dependency Q = f(z) (see Figure 3a). 
The number of Mmax iterations in subsequent initiation 
of the Metropolis procedure was increased by a certain 
value D M.

Figure 3 a) change of the “temperature” parameter, b) modification of the neighbourhood function
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7.1	 Function of changing the “temperature” 
parameter
	
A significant problem in the simulated annealing is 

the appropriate selection of the method of lowering the 
parameter Q. Too rapid lowering of the “temperature” 
has a negative effect on the accuracy of the algorithm, 
too slow - increases the calculation time. The parameter 
Q is used in determining the probability of acceptance 
(see Equation (34)) of the worse solution. This probability 
depends on the difference in the evaluation function 
Df, as well. The application of variable parameters 
of neighbourhood generation and the change in the 
number of segments n of the system causes that the 
mean value D f decreases with each implementation of 
Metropolis. In the analyzed cases, the mean value Df 
had almost exactly double in each successive Metropolis. 
The described change should be taken into account in 
the “annealing schedule”. For the statement (-Df /Q) in 
Equation (34) to behave as expected, the value of the 
parameter Q should be reduced accordingly in each 
iteration z.

8 	 The results of numerical calculations  
and experimental research 
		
This section presents the results of numerical 

calculations with the use of a static and kinetic 
stability criterion. In the considered case of a specific 
load, appropriate results of theoretical research were 
presented, with selected geometrical parameter of the 
load taking heads, that is Ro

*. 
	 Based on the energy method, the scope of 

critical load changes of optimized columns and their 
shape was determined, with the assumed criteria of 
the fixed volume of the systems. The scope of changes 
in the natural vibrations in the external load function 
and the form of vibrations were obtained by solving 
the boundary conditions, using the vibration method. 
Additional experimental research was carried out with 
regard to the value of natural vibrations frequency. 

8.1	 Results of numerical calculations - static 
stability criterion 

Taking into consideration the transcendental 
equation for the value of critical value (see the Equation 
(32)), numerical calculations were carried out to 
determine the maximum value of the critical force 
Pkr of columns, in the considered cases of natural 
load. Numerical calculations were carried dividing the 
column into n = 128 segments. The introduction of the 
division of columns into a larger amount of segments 
did not significantly affect the obtained result and 

At the initial stage of optimization, selection of 
this segment can be completely random. However, at 
the final stage, it is possible to select only one of the 
two segments adjacent to the element whose volume is 
increased (i = j ± 1). The maximum difference of indices 
of modified segments, defined as the product of the 
number of segments n and the coefficient Y (Y = f(Q)), 
where Y=1...0. Taking into account the second variable 
parameter, the volume change coefficient Dv, a certain 
set value of Dv0 was assumed at the beginning of the 
calculation. Those values were decreased together with 
the decrease of the parameter, until the minimum value 
Dvmin, defined at the beginning, was reached at Qmin 
(Figure 3). The application of such a solution significantly 
accelerated the optimization process, especially at the 
beginning of the calculation. The parameters Dv, Y, 
similar to Q and M were modified after each time the 
Metropolis procedure was carried out.  As a result of the 
described modification, the neighbourhood function was 
recorded as:

, ,S v YN B TW W= ^ h .	 (41)

Another implemented modification of the algorithm 
of simulated annealing is a change of the number of 
segments n constituting a part of a slender system, 
made together with the change in the value of the 
mentioned parameters, that is:

n 2z 1= + .	 (42)

Each segment of the column is divided into two 
segments with lengths equal to half of the length of 
the divided segment. The diameters of both segments 
are equal to the diameter of the divided segment. 
In the considered cases of column loads, the system 
was originally divided into two segments (z = 0). The 
number of segments n into which the slender system 
was divided, was changed in geometrical progression 
with a quotient equal to 2 to nmax value (maximum 
number of segments). The division was carried out 
after each Metropolis step loop until the length of the 
segment l was greater or equal to the minimum length  
lmin:

.l n
L

min
max

= 	 (43)

Implementation of the above-mentioned 
modifications to the algorithm of simulated annealing 
results in a significant acceleration of the shape 
optimization process. Thanks to the initial division into 
a small number of segments, it is possible to quickly 
determine the “coarse” shape of the columns. At the 
final stage of calculations, when the length of segments 
is short, small changes in shape result in smoothing the 
shape of the systems.
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optimized column with the changed   flexural rigidity is 
presented in Figure 5, where:

%100O
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ocD R jocDO R j P

o

ood
m

m m
=

-
)

) )_

_

_i

i

i

	 (44)

Considering the division of columns into n - 128 
segments, the critical load increase by at most 40.64 % 
was obtained. 

Figure 6 shows the shapes of models of optimized 
columns (optimum diameter distribution), with selected 
geometrical parameters of loading and load taking 
heads. The physical models of considered columns (see 
Figure 1) were built from segments which have been 
described by a fixed diameter di  and fixed length l. 

As a result of numerical calculations of the 
optimization issue, “stepped” shapes of the systems 
were obtained. Due to a significant number of segments, 
in relation to the total length L of columns, the actual 
shapes were approximated by polynominals of a relevant 
degree (with the highest possible correlation coefficient 
and the lowest standard deviation, in relation to the 
actual shapes) and they were drawn as smooth. Taking 
into account the assumed criterion for the constant 
volume of systems, the outline of prismatic (comparative) 
columns are marked with the dashed lines. For each of 
the presented shapes, values of the critical force, the 

it extended the time of numerical calculations. The 
obtained increase in the critical load with division into 
128 and 256 segments differed by at most 0.18 %. The 
value of critical load of optimized system DO(Ro

*  j) and 
the parameters of load taking heads were related to the 
total constant length L of the system and the constant 
flexural rigidity (EJ)p of prismatic (comparative) column 
DP(Ro

*  j).
Figure 4 shows the scope of changes in the critical 

parameters of the column load as a function of changes 
in the parameters of load taking heads. The results of 
numerical calculations were presented in the case of the 
systems with an optimized shape DO(Ro

*  j) (solid lines) 
and corresponding columns DP(Ro

*   j) (dashed lines) 
with a constant along the length of the flexural rigidity 
system. 

At the considered values of the radius R of the 
loading head, each of the critical load change curves was 
characterized by occurrence of the maximum value of 
the critical load parameter loc. In the case of comparative 
columns with fixed flexural rigidity (EJ)p the extreme 
value is determined at parameters Ro

*  = 0.5. The range 
of the value of radius R of the loading head, changing 
from zero to the length of the column ,L R 0 1o !

)^ h  
was taken into account in the calculation. If Ro

*  = 0, 
then the Euler’s load case is obtained.

The percentage increase in the critical load do of the 

Figure 4 Change of the critical load parameter ocm  as a function of the parameter  
value Ro

*  of columns DO(Ro
*  j), DP(Ro

*  j)

Figure 5 The percentage increase in the critical load od as a function of the parameter  
value Ro

*  of columns DO(Ro
*  j)
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out with regard to the value of natural vibrations 
frequency w of a column DO(Ro

*  j). Taking into account 
the variable flexural rigidity of optimized columns, it has 
been limited to determination of the nature of changes 
in the first two basic natural vibrations frequencies 
in a  dimensionless form ,o o1 2X X^ h , as a  function of 
a dimensionless load parameter lo, with selected values 
Ro

*, Dr of heads performing the specific load cases, which 
are discussed. The following is assumed:

,
EJ
PL

o
p

2

m =
^ h

	 (45)

,
A

EJ

L
o

p

p
2 4t ~

X =
^

^

h

h
	 (46)

where: A - cross-section area of the comparative column
(rA)p - specific mass per unit length of the 
comparative column.

corresponding optimized and prismatic column, as well 
as the percentage increase of the critical load parameter, 
were given. It has been limited to the selected values of 
the parameter Ro

*  of the loading and load taking head. 
In a specific case Ro

* = 0  (Figure 6a), a characteristic 
feature for all the presented shapes is the presence of 
narrowings in the cross-section along the length of the 
columns. The location of the points described by the 
minimum value of the diameter depends on the value of 
geometric parameters of heads that are involved in the 
specific load case discussed.

8.2	 Results of numerical calculations - free 
vibrations

Taking into account the solution of the boundary 
issue, which has been obtained based on the kinetic 
stability criterion, numerical calculations were carried 

Figure 6 The shape of the optimized column DO(Ro
*  j) with the variable parameter value Ro

* j of the loading  
and load taking head: a) Ro

* = 0, b) Ro
* = 0.1, c) Ro

* = 0.2, d) Ro
*  = 0.3, e) Ro

*  = 0.4, f) Ro
*  = 0.5, 

g) Ro
*  = 0.6, h) Ro

*  = 0.7, i) Ro
*  = 0.8, j) Ro

*  = 0.9, k) Ro
*  = 1.0
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are identical as in the case of application of the 
static criterion. Depending on the value of geometric 
parameters of the loading and load taking head, the 
presented courses of the basic frequency of natural 
vibrations Wo1, in the plane lo - Wo (Figure 9) have 
a negative, positive or zero inclination.

Figure 10 shows the forms of vibrations (M1, M2, 
M3) corresponding to the first three natural vibrations 
frequencies (parameters: Wo1, Wo2, Wo3) of the considered 
column. The forms of vibrations were determined with 
the normalization condition, assuming the value of 
the integrated constant of the motion equation result - 
normalization as to the constant, that is:

C 1ln = 	 (48)

Taking into account Equation (48) in the dependence 
in Equation (36), after the prior rejecting of one of the 
geometric boundary conditions, a heterogenous system 

The results of numerical calculations of changes 
in eigenvalues of the column DO(Ro

*   j) are presented 
in Figures 7 and 8. In case of Ro

*  = 0 (the curves 1 - 
Figure 7), the scope of changes in the natural vibrations 
frequency corresponds to the model of the column in 
which the Euler load case was implemented.

The scope of changes of the basic natural vibrations 
frequency of columns DO(Ro

*   j) and DP(Ro
*   j), with 

selected parameters of heads Ro
* is shown in Figure 9. 

In the calculations, the zero value of the point mass m at 
the free end of the column was assumed, where:

,m
A
m
L

o

pt
=
^ h

	 (47)
	

The value of the critical load of the discussed 
columns, in case of certain geometrical parameters of 
loading heads, were achieved with the parameter Wo1= 
0. The values of the critical load parameter, which 
were obtained based on the kinetic stability criterion, 

Figure 7 Curves on the plane load parameter lo - parameter of natural vibrations  
frequency lo (system DO(Ro

*  j))

Figure 8 Curves on the plane load parameter lo - parameter of natural vibrations  
frequency lo (system DO(Ro

*  j))
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Figure 9 Curves on the plane load parameter lo - basic frequency of natural vibrations parameter lo1  
of the optimized column DO(Ro

*  j) and the comparative column DP(Ro
*  j))

Figure 10 The forms of vibrations of the column DO(Ro
*0.5)

Figure 11 Divergence and divergence-pseudo-flattery scope of columns DO(Ro
*  j), DP(Ro

* j)
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. , ,ma b i n0 001 1 f$ + =6 @ .	 (49)

Geometric inequality constraint in Equation 
(49) of the optimized column is justified due to the 
buckling plane of the system assumed in the numerical 
calculations and experimental systems, described with 
the minimum moment of inertia with respect to the 
neutral axis in the bending plane. 

An experimental study was carried out at the 
stand, which was designed and constructed in the 
Department of Mechanics and Machine Design of the 
Czestochowa University of Technology. The stand 
(Figure 12) is composed of a support frame (1) to which 
the head (2) is attached. The element of the head (2) 
consists of a  screw system by means of which the 
force loading the analyzed column (5) was generated 
with the use of a  dynamometer (3) and a  plate (4). 
Supports were attached to plates 8(1) and 8(2), which 
were implementing the required boundary conditions 
of the column. With four ball bearings (6), used at the 
pivots of the plate (4), a  rectilinear shift was ensured 
in the guides (7). The guides (7) were attached to plate 
8(1). The loading head (9), which was implementing 
the required boundary conditions at the free end of the 
analyzed system, was attached to the plate (4). The 
conditions of rigid bracing of the column is ensured by 
the element (1), which was attached to plate 8(2) with 
the housing (11). The head taking the load (12) was 
attached to the analyzed column with the use of block 
(13). It is assumed that the components:
•	 of the loading head (6),
•	 of the head taking the load to the column (12), (13),

are infinitely rigid. It is justified due to construction 
purposes. Figure 12 also presents the diagram of 
the measurement system. The measurement system 
consists of a  modal hammer (15) (Brüel&Kjaer type 
8200 + 2646), a  laser vibrometer (14) (VH - 1000 - D 
made by OMETRON), an analyzer (17) (Brüel&Kjaer 
type 3560C) and a  computer (18) with the software 
PULSE (version 7.0). The modal hammer is connected to 
the analyzer only when the experimental modal analysis 
is performed. 

As a  part of numerical calculations, with a  static 
stability criterion, the shape of the optimized column 
was determined. Taking into account the rigid elements 
in Equations (12), (13) of the load taking head (see 
Figure 12) in the mathematical model of the system, 
the boundary conditions (11) and (15) at the free end of 
the column (xn = l) are modified. Thus, the following is 
obtained:

of equations with (n-1) unknowns Cki  (i=1,...,n, k =1,...,4) 
was obtained. Based on the result of the system of 
equations, the remaining integration constants Cki were 
determined. The forms of vibrations of the columns, with 
the natural vibrations frequency parameters WoV (V = 1, 
2,…) were described with relations in Equation (34).
The scope of changes in the forms of natural vibrations 
is presented (Figure 10) as a  function of external load 
regarding the selected geometry of the loading and load 
taking head (Ro

*  = 0.5).
In a  general case (MV), the form of vibrations 

corresponding to V- of this frequency of natural vibrations 
(V = 1, 2,…) has (V-1) nodes.

Based on numerical calculations, a  change in 
the forms of vibrations ((M1), (M2)) was observed on 
the curves of the first and second natural vibrations 
frequency. In the case of the comparative column  
DO(Ro

* j), this phenomenon was confirmed by 
experimental studies using the modal analysis.

The obtained nature of changes in eigenvalues (see 
Figure 7 to 9) and the scope of changes of the forms of 
natural vibrations along the curve lo=f(Wo) (see Figure 
10), allows to include the optimized and comparative 
columns, subjected to a specific load, to one of two types 
of systems: divergent ((dWo1/dlo)|lo=0<0) or divergent - 
pseudo-flattery ((dWo1/dlo)|lo=0>0). Figure 11 presents 
the scope of changes in the value of the parameter Ro

*  of 
the head taking the load with the force directed towards 
the pole, where the optimized column DO(Ro

*  j) and the 
comparative column DP(Ro

*  j) are included to one of two 
above-mentioned types of systems.	

8.3	 Experimental studies
	
This section of the paper presents the results of 

experimental studies and numerical calculations of the 
optimized system with the selected geometry of the head 
taking the load with follower force directed towards the 
positive pole DO(Ro

*   j). The physcial and geometric 
parameters of the analyzed column are given in Table 1.

A rectangular cross-section of the analyzed column 
of dimensions a and b, was assumed for the calculations 
and experimental studies. Taking into account the 
criterion of the constant volume of the system; the 
width of the cross-section a was assumed (ai - decision 
variables of the optimization process) with its fixed 
thickness b. In the applied modified method of simulated 
annealing, an additional condition was included in the 
following form:

Table 1 Geometric and physical parameters of the column DO(Ro
*  j) 

E
[Pa]

t

[kg/m3]
L

[m]
b

[m]
R

[m]
l0

[m]
m

[m]

7.5*1010 2790 0.6 0.008 0.059 0.051 0.39
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boundary issue, with the use of modified boundary 
conditions in Equation (50) is shown in Figure 14. The 
dashed line presents an outline of a relevant comparative 
column DP(Ro

* 0.0125). In the case of the optimized 
shape of the system obtained, the critical load increase 
by 24.3 % was achieved. The structural solutions of the 
research stand presented in Figure 12 are also shown in 
the picture (Figure 13b). In the pictures (Figures 13a and 
13c) the shape of the examined column and the design 
solution of the load taking head are presented, as well.
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	 (50)

where l0 - total length of rigid elements in Equation (12) 
and Equation (13) - see Figure 12.

The shape of the optimized column DO(Ro
* 0.0125) 

(solid lines), obtained based on the solution of the 

Figure 12 The stand for testing the natural vibrations  
of columns located in a vertical position

	

Figure 13 a) shape of the examined column b) stand for examining vibrations  
of the slender systems with a mounted column, c) load taking head
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Figure 14 presents also a non-deformed form of the 
examined system. Ten nodes, in which the measurements, 
were made were distinguished within the research 
object constructed with the use of PULSE 7.0 software. 
The forcing is realized by hitting the successive points 
(n) of the examined column with a modal hammer and 
simultaneously the velocity of displacement of the node 

Taking into account the obtained shape of the 
optimized column (Figure 14), experimental research 
was carried out with regard to changes in the frequency 
of natural vibrations and the form of natural vibrations 
of the considered system. For this purpose, experimental 
modal analysis was performed using the professional 
equipment and software. 

            

   
Figure 14 Shapes of columns: DO(Ro

* 0.0125), DP(Ro
* 0.0125). Model of the optimized column developed  

for the experimental modal analysis (the system DO(Ro
* 0.0125 ))

Figure 15 Curves on the plane load P - natural vibrations  
frequency f (the system DO(Ro

* 0.0125)

Figure 16 The forms of vibrations of the column DO(Ro
*  0.0125) obtained based  

on the numerical calculations and experimental studies
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is obtained. The obtained shapes of optimized columns 
are characterized by the occurrence of the cross-section 
narrowing points along the length of the columns. The 
location of these points depends on the value of the 
geometrical parameters of the heads carrying the load. 
Based on the results of numerical calculations, it should 
be stated that the simulated annealing algorithm is an 
effective method of searching for the extreme of functions 
of many variables and can be used to optimize the shape 
of slender systems. Modifications proposed in the work, 
the adopted calculation method (modified algorithm of 
simulated annealing), were aimed at accelerating the 
process of searching for the optimal solution.

In the field of dynamics of systems (vibration 
method), based on the Hamilton’s principle and total 
mechanical energy of systems, the corresponding 
equations for motion equations and boundary conditions 
were derived within the scope of loss of the rectilinear 
form of equilibrium. Solving the boundary problem 
enabled numerical calculations to determine the 
range of changes in the frequency of vibrations as a 
function of the load of optimized columns. Diagrams of 
eigenvalues on the plane were obtained: load parameter 
om - eigenfrequency parameter oX  and eigen vibration 

forms. It has been shown that the critical load values 
obtained based on the kinetic stability criterion are the 
same when applying the static criterion. The correctness 
of the adopted mathematical model of the system was 
confirmed by presenting the results of experimental 
research. Discussing the impact of external load and 
geometrical parameters of the heads: forcing and taking 
over the load on the nature of changes in the frequency 
of natural vibrations, including the corresponding forms 
of vibrations, the considered systems were classified as 
divergent or divergent pseudoflatter type systems.
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(A) of the column is measured with the use of a  laser 
vibrometer. The signal from the modal hammer and 
laser vibrometer is sent to the analyzer and then to the 
computer using the ME’scopeVES 4.0 software from 
Vibrat Technology; the values of natural vibrations 
frequencies and the forms of natural vibrations of 
the optimized system were obtained. The results of 
numerical calculations (solid lines - the system DO(Ro

* 
0.0125)) and experimental studies (points), regarding 
the changes in the frequencies of natural vibrations, are 
presented in Figure 15.

The dashed lines show the course of changes in the 
eigenvalues of the comparative column DP(Ro

* 0.0125). 
The scope of changes of the first three frequencies of 
natural vibrations f, as a  function of external load 
P was given. Comparing the results of numerical 
calculations and experimental studies of the column 
DO(Ro

* 0.0125), a  good consistency of the results was 
found. The maximum relative error with the basic 
natural vibrations frequency, between the experimental 
results f e and the frequencies obtained in theory f t, was 
7.24 %.

The forms of the transverse natural vibrations of the 
column (M1, M2, M3), obtained during the experiments 
and thanks to numerical calculations, are shown in 
Figure 16. The relevant results were shown with the 
external load value P =1640 [N] and the geometric and 
physical parameters of the system from Table 1. 

9	 Conclusions
		
In this work, the issues of stability and natural 

vibrations of slender elastic systems modelling the 
bridge span subjected to the follower force directed to 
the positive pole were analyzed and examined. Based on 
the principle of minimum potential energy, displacement 
equations and boundary conditions were determined. 
Considering the variable flexural stiffness of the 
systems, the leap equation was derived for the critical 
load value - the objective function of the optimization 
problem. The simulated annealing algorithm was 
used in the considerations. The values of the critical 
load parameter of columns, optimized for the adopted 
criterion of constant volume of systems, were obtained. 
An increase in the critical load of optimized columns of 
40.64 % was obtained. It was found that there are such 
values of the head carrying the load parameters, at 
which the maximum value of the critical load parameter 
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