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Resume
The rail rolling stock undercarriage condition monitoring is proposed by 
using an automated measuring system, located on the railway track and 
measuring the specified parameters of the wheels directly, while the train 
is moving. Regular undercarriage condition monitoring reduces the costs of 
preventive maintenance of rolling stock without compromising the traffic 
safety. An algorithm has been developed for the operation of a special 
software package for visualizing and assessing monitoring data on the 
condition of the undercarriage of rail rolling stock. The software package 
consists of separate software modules that can be used independently of 
each other. It is possible to make short- or long-term predictions of the 
behavior of any of the monitored parameters using an proposed automated 
measuring system.
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2	 Presentation of basic materials

The operation of the wheel-rail system is associated 
with significant wear of both components interacting 
in it [9-12]. This specially applies to wheels. The 
parameters of wheel pairs, controlled in operation, are 
the distance between the inner edges of the railway 
wheel flanges, rolling surfaces, thickness and vertical 
undercut of the wheel flanges [13-14]. To ensure the 
high reliability, measurements of these parameters are 
carried out at four points on the circumference of each 
wheel [15-17].

Manual measurements, using special templates, 
are associated with significant labour costs, as well 
as downtime of the rolling stock. Automation makes 
these measurements faster. This ensures the necessary 
measurement accuracy.

1	 Introduction

With the increase in the speed of rail vehicles, 
the demands for the quality of both the track and 
rolling stock are growing. However, the situation in 
the transportation services market does not allow for 
a  significant increase in expenses for the technical 
maintenance of rolling stock. Therefore, it is necessary 
to ensure optimal utilization of funding without 
compromising the safety level of transportation [1-4].

Increasing the traffic volumes and train speeds 
require greater attention to monitoring the condition of 
the rail rolling stock. To solve this problem, measuring 
devices are created that are located on or near the 
railway track and are capable to measure the necessary 
parameters directly while the train is moving, by their 
dimensions, weight and other parameters [5-8].
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do this (Figure 2), two lasers, with the V-shaped beams 
diverging in one plane, are placed beneath the wheel 
under the study. These rays are recorded by a digital 
video camera located on the side.

Images of pictures are transferred to the 
microprocessor module using appropriate transformation. 
For this process to be carried out without disturbing the 
scale, the transformation parameters are calibrated on 
a wheel segment of known diameter [25-26]. Guaranteed 
accuracy of the wheel diameter measurements with 
a range from 600 to1300 mm is 0.6 mm.

The distance between the inner edges of the 
wheelset wheels flanges is determined using an optical 
measuring system. The triangulation device used for 
measurements sends a laser beam to the inner edge of 
the wheel flange, where the beam trace is observed as 
a luminous point. An optical system, mounted on the 
side, records the location of this point. The error, when 
measuring the distance between the inner edges of the 
wheel flanges, can reach the value of 0.4 mm.

To use an automated measuring complex for other 
types of rail vehicles (subway cars, trams, etc.), it is 
necessary to select the diameter of the probing laser 
beam experimentally, and adapt the location of the 
complex measuring elements.

The change of the wheel profile is caused by its wear 

Monitoring wheels to detect out-of-roundness and 
sliders is a basic condition for ensuring the traffic 
safety [18-20], especially for high-speed trains. Having 
accepted that the wheel flange apex has a sufficiently 
accurate circularity and concentricity with respect to 
the axis of rotation, it is supposed that the deviation 
from the nominal wheel flange height is identical to the 
deviation of the rolling circle from the ideal circle and 
carries information about the size of non-roundness 
and the depth of the sliders. In the proposed automated 
measuring complex, to control this parameter, a 
measuring beam is used, the lowering of which, when 
pressed with the top of the flange, is counteracted by 
the pressure of compressed air [21-22]. When the wheel 
rolls, the vertical stroke of the beam is measured using 
an electromechanical sensor. The signal from the sensor 
is transmitted to the micro-processor of the module, 
where it is processed and recorded as a change in the 
beam stroke for at least one wheel revolution [23-24]. 
Using the curve of changes in the height of the flange 
per revolution, the presence of non-roundness or a slider 
is determined (Figure 1). The error of sliders depth, or 
the size of out-of-roundness measuring, do not exceed 
0.2 mm.

The wheel diameter is determined by the radius of 
one wheel segment curvature using the laser beams. To 

Figure 1 Changing the flange height

Figure 2 Measuring the wheel diameter and the distance between the inner edges
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diameter (Figure 4). To do this, one laser with a flat 
V-shaped beam is installed below the rolling wheel such 
that the plane of the beam is strictly perpendicular to 
the direction of the wheel movement. All the specified 
parameters that determine the profile are measured 
with an accuracy of 0.2 mm. For repeated measurements 
of the same parameter, the accuracy is 0.1 mm.

The condition of the metal adjacent to the wheel 
tread is examined using ultrasonic pulses of a frequency 

due to the loss of material from the tread surface [27-30]. 
The quality of a wheelset is determined by the following 
main parameters: height and thickness of the flange, 
transverse size (qr) used as the basis for calculating 
the amount of flange trimming, the distance between 
the inner edges of the wheel flanges and the equivalent 
conicity (Figure 3).

Measurement of a wheel tread surface profile is 
performed using the same method as measuring its 

Figure 3 Parameters of the measured wheel profile: Ar - the distance between the inner edges of the wheel flanges;  
Sr - track width; Sd - flange thickness; Sh - flange height; Dl - diameter of the rolling circle: MK - surface of the measuring 

circle; qr - transverse dimension used to calculate the amount of flange trimming

Figure 4 Measurement of the wheel tread surface profile

Figure 5 Propagation of pulses in a wheel during the ultrasonic flaw detection
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To ensure the high reliability of the presented 
method, wheel parameters are measured at four points 
on the circumference of each wheel. To check the 
measurement accuracy of the automated measuring 
system, they are compared to manual measurements 
using special templates. Errors were determined and 
possible deviations were investigated.

3	 Findings and discussion

Based on the assigned tasks, the structure of 
the automated measuring complex was determined. 
Measuring sensors consist of 16 units installed evenly at 
the ¼ distance of the wheel circumference on both sides 
of a rail. The operating principle of the sensors is laser 
triangulation. The functional diagram of the automated 
measuring complex is shown in Figure 6.

of 400 kHz, which are sent to the wheel tread by the 
transceiver head. The impulse is being propagated in 
the wheel in the form of surface waves, which repeatedly 
circle the wheel in both directions (Figure 5). A defect in 
the wheel generates a reflected echo.

A crack located perpendicularly to the direction of 
the ultrasonic pulse propagation causes the signal to 
be reflected. The echo signal, reflected from the defect, 
and the so-called bottom signals that run around a full 
circle, are recorded by the transceiver head. In this 
case, the useful signal is amplified, passes through an 
electronic filter, and then enters the micro-processor 
of the module [31-32]. Here it is assessed according to 
various criteria, and the ratio of the amplitudes of the 
signals reflected from the defect and the bottom signals 
serves as a measure for assessing the depth of the crack 
in the metal layer adjacent to the wheel tread (Figures 
4 and 5).

Figure 6 A functional diagram of an automated measuring complex with feedback on radiation intensity: 1 - wheel,  
2 - laser, 3 - photodetector, 4 - measuring cell, 5 - computing module, 6 - controller

Figure 7 Dependence of the reflected signal intensity on the position of the laser beam on the rolling surface: 1 - laser beam 
with a diameter of 0.7 mm; 2 - laser beam with a diameter of 3.5 mm; 3 - laser beam with a diameter of 5 mm
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to check the wheels of all the passing trains without 
significantly reducing the speed of movement. In this 
case, the entire measurement cycle, together with the 
delivery of information to the operator’s console of the 
TIP, occurs in real time. All measurements of train’s 
wheelsets with the length of 400 m, which moves at a 
speed of about 10 km/h are performed within 3 minutes. 
All the measurement results, which provide complete 
information about the condition of each wheel and wheel 
pairs, are stored in the digital media.

All elements of the automated measuring complex 
are combined into a network (Figure 8). The measurement 
results make it possible to identify wheelsets for wheel 
turning or replacement of wheelsets. Having the data 
on the condition of the profile of each wheel, the mode of 
turning it on a wheel lathe can be preset.

A special software package is used to visualize 
and analyze the obtained data. It consists of individual 
software modules that can also be used independently 
of each other. The main mandatory data showing the 
train configuration, maximum dimensions and types of 
measurements are contained in the database. To obtain 
the necessary information, the computer connects the 
system database via a network. All the measurement 
results stored in the database can be quickly accessed 
using this software package.

Reducing the railway transport maintenance costs 
(percentage or quantity) depends on the specific car fleet, 
the availability of equipment for maintenance and repair 
and many other factors. The main costs of servicing the 
railway transport are associated with a reduction in 
labour costs, downtime of rail vehicles and other factors. 
Specific figures for costs reduction may vary depending 
on operating conditions and several other factors. The 

As the wheel moves, it crosses a beam of laser 
radiation, and the wheel tire is scanned. The image of 
the radiation spot on the rolling surface is projected 
through the lens onto a matrix of linear photosensors.

The position of the spot on the matrix corresponds 
to the distance from the sensor to a certain point on the 
rolling surface.

Due to the large inertia of the train, the movement 
of the wheel during measurement can be considered 
uniform. The running speed is determined using an 
inductive axle number sensor. Based on the known 
values of the distance from the wheel tread to the sensor 
and the train running speed, the controller calculates 
the profile and other parameters of the wheel.

The optimal diameter of the probing laser beam 
for the average wheel tread surface roughness was 
experimentally selected. The results of measurements 
performed at different laser beam diameters are shown 
in Figure 7. Analysis shows that the maximum dynamic 
range and maximum intensity burst occur with focused 
laser beam radiation. Increasing the beam diameter 
from 3 mm to 4 mm does not lead to a decrease in 
dynamic range. Therefore, the optimal beam diameter 
value can be considered in the range from 3 mm to 4 
mm.

The introduction of a second feedback channel 
made it possible to increase the accuracy and speed 
of measurements, as well as to expand the range of 
applicability of sensors under external illumination 
conditions.

The automated measuring system is designed for 
installation directly on the railway track in the area 
of the entrance to the technical inspection point (TIP). 
This arrangement of the complex makes it possible 

Figure 8 Networking of measuring and testing modules, base module and operator workstations:  
EW - external workplace; NA - network device; LWL - fiber optic cable; Central PC - central PC;  

DBS - Database server; AMC - Automated measuring complex; Bm - basic module;  
Im - identification module; Rmrs - module for detecting non-roundness and sliders;  

Dm - wheel diameter measurement module; Pm - profile measurement module;  
Rmcd - crack detection module
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are, e.g. changes in the flange height of a certain 
wheelset within two weeks. The prediction makes it 
possible to determine the remaining service life of each 
wheel pair and plan measures for its repair.
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idea of the presented method is to show that the use 
of an automated measuring system can reduce the 
servicing railway transport costs by several percent.

4	 Conclusions

Regular registration of critical vehicle parameters 
with their subsequent assessment and analysis is the 
basis for organizing the reliable and cost-effective 
condition-based maintenance. Similar technologies are 
already widely used in air transport. Under operating 
conditions of rail rolling stock, regular parameters 
monitoring of wheel pairs, reduces the costs of 
preventive maintenance work without compromising 
traffic safety. Of course, the potential for savings in 
operating costs with increased the traffic safety can 
only be achieved with regular monitoring of the bogie  
parameters.

When using the proposed automated measuring 
system, a short- or long-term prediction of the behavior 
of any monitored parameters can be performed, which 
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