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Resume
A method for online dynamic routing of freight delivery under limited 
traffic information using an ant colony algorithm, has been proposed. This 
method leverages real-time IoT data on traffic flow (TF) intensity from traffic 
sensors on urban road network (URN) sections, combined with averaged 
historical data on TF parameters (speed, density, intensity) obtained from 
traffic sensors on representative sections of homogeneous clusters within the 
URN. The procedure for forming homogeneous clusters within the URN and 
identifying representative sections is described. The results of simulation 
studies using the URN of Kyiv as an example indicate the potential of this 
method for urban transport logistics in conditions of complex traffic.
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advantages and disadvantages, necessitating 
further comprehensive research for their  
improvement.

One of the most promising approaches to 
monitoring the current state of the URN remains the 
use of traffic sensors combined with IoT technologies. 
Unlike many other approaches, this one provides 
the high accuracy in measuring the dynamics of 
traffic flow characteristics and allows for real-time 
data collection and analysis. However, it also has 
its drawbacks, including the high cost of modern 
sensors, such as digital video cameras with computer 
vision, and the limited coverage area, which requires 
the installation of a large number of sensors to obtain 
a complete picture. Moreover, there are currently 
no perfect methods for the real-time discrete route 
optimization that simultaneously consider the actual 
configuration of the URN and the dynamics of traffic 
flows on its sections.

In this context, developing and improving 
dynamic routing methods in urban transportation 

1	 Introduction

Dynamic routing plays a key role in modern 
urban transportation logistics, enabling real-time 
management of traffic flows, ensuring consistent 
service quality for customers, improving road safety, 
and reducing negative environmental impacts. This 
requires the use of systems for timely collection and 
processing data of current dynamic characteristics 
of traffic flow on sections of the urban road network 
(URN), as well as efficient intelligent methods for 
discrete route optimization based on the analysis of 
this data.

Today, there are numerous advanced innovative 
technologies available for obtaining the relevant 
data, such as GPS technologies combined with 
modern geographic information systems (GIS), the 
Internet of Things (IoT) with traffic sensors, VANET 
systems, and others, which allow for automated 
dynamic routing through the integration of real-
time data. Each of these technologies has its own 
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combined with modern GIS systems; VANET systems; 
Internet of Things (IoT) with traffic sensors; big data 
(BD) processing; blockchain (BC), among others (see, 
for example, [8-20]). These technologies allow for 
automated dynamic routing in real-time through the 
integration of data with modern artificial intelligence 
(AI) methods for discrete route optimization. The 
most suitable methods include swarm intelligence 
(SI) techniques, particularly ant colony optimization 
(ACO), particle swarm optimization (PSO), artificial 
bee colony (ABC) algorithms; genetic algorithms 
(GA); simulated annealing (SA); tabu search (TS); 
artificial neural networks for machine learning and 
deep learning; their modifications and hybridizations 
[21-26].

As the analysis shows, until now, practical 
aspects of DVRP have largely focused on the use of 
GIS data, which are derived from global navigation 
satellite systems (GNSS) technologies, primarily 
GPS. (see, for example, [8-12]). Typically, the main 
advantages of GPS technologies, such as wide 
coverage, integration with other systems, obtaining 
data on the actual configuration of URN sections, 
and relevant attributes of these sections (speed 
limits, congestion, waiting times at intersections, 
real-time traffic data, etc.) have been utilized. 
However, most studies have primarily explored the 
problems of dynamic planning for optimal delivery 
routes in transport logistics [8-12]. Moreover, route 
optimization has generally been carried out using 
classical methods of discrete optimization for small-
scale transport logistics problems using historical 
GIS data. It is also worth noting that one of the 
most promising directions involves utilizing Galileo 
GNSS data. Indeed, Galileo PPP and/or Galileo 
RTK/RTN technologies offer several advantages over 
GPS technologies. These include higher positioning 
accuracy, improved signal penetration, and greater 
compatibility and integration with other GNSS 
systems, including GPS [13-14]. However, under 
current conditions, GNSS technologies present 
several limitations for solving DVRP. For instance, 
GNSS remains less effective compared to road IoT 
sensors in urban canyons with complex configurations 
or tunnels due to multipath signal propagation caused 
by reflections from structures. Additionally, GNSS 
PPP requires a relatively long data initialization time 
(up to 20 minutes [13]), which currently prevents its 
application for real-time dynamic routing tasks in 
scenarios involving complex traffic conditions.

In recent years, the use of VANET network 
systems has played an important role in improving 
the road safety, enhancing the efficiency of transport 
logistics systems, and providing convenient services 
for participants in the transport process (see, for 
example, [15-17]). Vehicular Ad-Hoc Network (VANET) 
is a self-organizing network used in the transport 
environment for communication between vehicles 

logistics to overcome existing shortcomings remains 
a relevant problem.

2	 Literature review

The problem of dynamic vehicle routing (DVRP) 
involves finding optimal routes for vehicles in real-
time when some or all types of input data change 
over time [1]. Addressing the challenges of dynamic 
vehicle routing is crucial for enhancing the efficiency, 
cost-effectiveness, environmental sustainability, 
and safety of urban transportation logistics, 
especially in the context of rapid urbanization and 
increasing motorization of society. In a fast-changing 
environment, transport logistics companies, operating 
within limited time frames, must continuously adapt 
to these changes and ensure consistent service 
quality.

Recently, solving of DVRP tasks for e-commerce 
or last-mile commerce, which is rapidly growing, 
has become particularly relevant. Therefore, the 
development of effective and sustainable technologies 
is imperative to meet this demand and maintain high 
service levels. Multimodal deliveries, crowdshipping, 
and parcel lockers offer flexible options for 
e-commerce, contributing to hyper-connected urban 
logistics (HCL) for courier services [2-3]. Despite 
their potential, the effective use of these technologies 
is hindered by the absence of a comprehensive 
mathematical apparatus capable of tackling the 
complex modelling challenges for delivery processes. 
Here it is necessary to take into account numerous 
dynamic parameters and real-world constraints, 
including delivery times, freight volumes, travel 
distances, fleet characteristics, demand uncertainties, 
and stochastic customer requirements [2-3]. In this 
regard, DVRP problems are currently mainly solved 
taking into account individual constraints. At the 
same time, a large number of such DVRP are related 
to the problems of optimizing the route of delivery 
of goods with changing time windows, the nature 
and number of customer requests, the influence 
of weather conditions, etc. [2-7]. However, one of 
the main factors, affecting the dynamic impact of 
the environment on the effectiveness of transport 
logistics companies, remains the unpredictable and 
sudden changes in traffic on urban road network 
(URN) sections.

This necessitates the use of systems for timely 
collection and processing of data on the current 
dynamic characteristics of traffic flow on URN 
sections, data processing, and fast intelligent methods 
for discrete route optimization based on the analysis 
of this data.

Today, numerous advanced innovative 
technologies exist for collection and processing 
relevant data, such as GPS/Galileo technologies 
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the framework of solving the symmetric dynamic 
traveling salesman problem (DTSP), which does not 
fully account for the real configuration and traffic 
conditions on URN sections [22].

Based on the conducted analysis, the current 
understanding of dynamic routing of logistics flows 
under the rapidly changing and non-stationary 
dynamics of traffic flows on URN sections using IoT 
data from traffic sensors is incomplete and imperfect. 
This is primarily due to the limited availability of 
traffic information from a larger number of different 
types of sensors and the limited coverage areas of 
these sensors, which requires the installation of a 
large number of sensors to obtain a complete picture. 
However, the installation of modern sensors, such as 
digital video cameras with computer vision, is not 
always possible due to their high cost. These reasons 
also partly explain the lack of adequate adaptive 
methods for the discrete route optimization for freight 
delivery (see, for example, [23-26]), which would 
simultaneously consider the actual configuration of 
the URN and the real dynamics of traffic flows on its 
sections during transportation in real-time.

In this context, the objective of this work was to 
develop an online dynamic routing method for urban 
transport logistics under limited traffic information. 
This method is based on the use of current IoT 
traffic data from sensors on URN sections and 
averaged historical data on traffic flow parameters 
obtained from sensors on representative sections of 
homogeneous clusters that make up the URN.

3 	 Research methodology

3.1	 Description of the method

When modern means of measuring dynamic 
parameters (intensity q, and density t , average 
speed v h  of traffic flow (TF) are available on 
URN sections, optimizing routes in real-time does 
not present fundamental difficulties [20]. However, 
in the real-world operation of URNs, particularly 
in Ukrainian cities, relatively inexpensive traffic 
sensors are typically used, which measure only 
some TF parameters, such as TF intensity q values 
on specific sections over certain time intervals. 
This limitation prevents obtaining fully accurate 
information about the dynamic state of the URN and, 
consequently, restricts the ability to perform adequate 
real-time routing under complex traffic conditions. It 
is important to note that for most AI methods used 
in routing problems, the optimization parameters 
are time and/or distance of the route, which often 
requires knowledge of the average speed v  on URN 
sections. Therefore, solving the problem of adequate 
simulation of the dynamic routing processes under 
limited information about TF dynamic parameters on 

(V2V technology), between a vehicle and roadside 
infrastructure (V2I technology), and with personal 
mobile devices [15]. It is assumed that to solve 
transport logistics problems, travelers have access 
to real-time traffic information through V2V/V2I 
infrastructures and make route decisions accordingly 
[16-17]. However, VANET presents unique challenges 
due to its dynamic nature, requiring significant efforts 
to address. These challenges are related both to data 
transmission routing in a highly dynamic V2V/V2I 
information environment and to dynamic routing of 
logistics paths in a non-stationary URN environment 
while ensuring stable VANET communication [15-17].

One of the most promising approaches to 
monitoring the current state of the URN remains 
the use of traffic sensors combined with IoT and AI 
technologies. Unlike many other approaches, this 
one ensures high accuracy in measuring traffic flow 
dynamics and allows for the real-time data collection 
and analysis. However, in recent years, the use 
of traffic data on URN sections obtained through 
various types of traffic sensors has been relatively 
less represented in the literature compared to, for 
example, GIS-derived data (see [18-20]). For instance, 
authors of [18] presented an intelligent dynamic 
routing system using machine learning technology 
to predict speed profiles based on historical traffic 
data from road sensors. The system includes 
neural networks for short-term speed prediction 
depending on the day of travel, congestion levels, 
and distances between individual sensor locations 
along the route. In [19], an effective dynamic routing 
strategy is proposed, which includes the possibility of 
continuously updating travelers’ knowledge of travel 
times considering adaptive traffic signal control 
in real transport networks. In [20], a calibration 
model of an urban network consisting of two mini-
roundabouts and one uncontrolled intersection is 
presented. The simulation process is carried out in 
the SUMO environment, and traffic data and speeds 
are collected from recorded video for the selected 
URN.

Thus, as the analysis shows (see, for example, 
[18-20]), dynamic routing of logistics flows, 
considering the non-stationary dynamics of traffic 
flows on URN sections, has mainly been performed 
using historical IoT data. The possibility of dynamic 
route optimization for freight delivery based on 
real-time IoT and BD data processing about non-
stationary traffic dynamics on URN sections was 
first demonstrated in [21-22]. However, in [21], the 
computational operations during route optimization 
using the API from Bing and VRP_Spreadsheet_
Solver are too slow, preventing the full real-time 
implementation. In [22], the input data block for 
dynamic traffic characteristics on URN sections 
is limited to manual entry. Moreover, simulation 
studies on route optimization are conducted within 
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dynamic traveling salesman problem (DTSP), where 
the URN is represented as a weighted bidirectional 
graph [1]. The graph nodes correspond to delivery 
points, and the weights of the graph edges are 
assigned relative discrete values according to the 
optimization criterion. For instance, this could be 
the distance between graph nodes, the average travel 
time or speed, fuel consumption, transportation cost, 
ecological characteristics, etc. The cost matrix for 
such a graph contains indirect elements, such as the 
set of weights corresponding to a specific set of URN 
section characteristics that the vehicle sequentially 
overcomes between delivery points. The system 
enables the construction and dynamic updating of 
the graph based on real-time TF dynamic parameters 
obtained from traffic sensors.

For online discrete route optimization with 
dynamic updates within the DTSP task, a modified 
version of the classic ant colony optimization (ACO) 
algorithm was used [29]. Here, it is possible to 
fix the optimal configuration of a partially 
traversed route before automatically updating the 
graph weights based on changes in the dynamic 
characteristics of URN sections. To achieve this, 
the algorithm introduces Prek - list of graph edges 
that ant k is required to traverse, disregarding 
the probabilistic rule of the classical ant colony 
algorithm. Specifically, while at vertex i of the graph, 
ant k moves to vertex j if ,i j Prek!^ h ; otherwise, 
the next vertex is determined by the probabilistic  
rule.

The choice of the ACO modification (ACOmod) 
for solving urban transport logistics tasks in this 
work is due to several reasons. First, ACO and its 
modifications are more versatile compared to most 
other AI optimization methods (see, for example, 
[22-23, 25]). This allows for solving routing problems 
on URNs of the required scale [22]. Moreover, 
ACO and its modifications generally have higher 
performance [22-23]. Additionally, the optimization 
mechanisms in ACO and its modifications are similar 
to the dynamics of TF, especially in high-density 
modes. Indeed, according to Boris Kerner’s theory 
[30], the observed phase transition effects between 
different TF states are due to the manifestation 
of synergistic self-organization effects resulting 
from non-equilibrium non-stationary TF dynamics. 
Similarly, the path optimization process in ACO 
occurs due to the self-organization effects of ant 
colony agents during food search and delivery [29]. 
It is worth noting that such synergistic effects are 
observed in nonlinear non-equilibrium dissipative 
systems of various physical natures (see, for example, 
[31-33]). Thus, the use of ACOmod allows for the 
simulation of the route optimization processes 
with dynamic updates in real-time, considering 
the actual TF dynamics on the transport network  
sections.

network sections at specific times is relevant.
A method for online dynamic routing in urban 

transport logistics under limited traffic information is 
proposed. This method is based on the use of current 
IoT data on TF intensity (q) from traffic sensors on 
URN sections and averaged historical data on TF 
parameters (q, t , v ) obtained from traffic sensors 
on representative sections of homogeneous clusters 
that form the URN.

In the first stage, it is proposed to establish a 
rational TF monitoring network on the URN (see 
section 3.2) by implementing a step-by-step iterative 
procedure to identify representative elementary 
sections within specific homogeneous URN clusters 
[27-28]. It is recommended to place the traffic sensors 
that measure dynamic TF parameters (q, t , v ) 
on these sections. Accordingly, traffic sensors that 
measure TF intensity q in real-time are placed on 
other URN sections.

The formation of a rational TF monitoring 
network on the URN is based on the assumption that 
within the studied URN, there is always a certain 
number of homogeneous URN clusters, where the 
static and dynamic properties of TF formation on 
these sections are similar. This means that the TF 
dynamics across all the modes of its formation, and 
consequently the shape of the curves representing the 
relationship q q v= ^ h  have qualitatively identical 
characteristics for all sections within a homogeneous 
URN cluster, differing only in their quantitative 
values of q and v . Additionally, this means that the 
normalization coefficients for formation q q v= ^ h  
or a set of sections within a specific URN cluster 
remain constant. Thus, knowing these normalization 
coefficients, one can construct the relationship curves 
q q v= ^ h  for each section of a homogeneous cluster. 
Then, using experimentally measured data (q, t , v
) obtained from sensors on a representative section of 
the cluster and experimental data q obtained from 
sensors on other sections of this cluster, it is possible 
to construct a family of calibration curves q q v= ^ h  
for all the sections of each homogeneous URN cluster. 
Subsequently, for each calibration curve, the values 
of v  can be determined based on the known 
experimental data q. The procedure for constructing 
such a family of calibration curves is described in 
section 3.3.

Section 3.4 presents the results of developing an 
adaptive dynamic routing system for urban transport 
logistics tasks under limited traffic information. This 
system implements the procedure for simulating 
online optimization with dynamic route updates 
for freight delivery to destinations using a selected 
AI method of discrete optimization. The system 
allows simultaneous consideration of the actual 
URN configuration and the real TF dynamics on 
its sections during transportation. The optimization 
problem is solved using an example of the asymmetric 
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The iterative procedure for determining 
representative sections involves the following 
sequential steps:
•	 dividing URN into elements (streets and roads) by 

categories according to the current classification of 
streets and roads;

•	 dividing the elements (streets and roads) into 
elementary sections with fixed structural features 
that define the nature and parameters of traffic flow 
distribution within URN;

•	 forming homogeneous groups of elementary street 
and road sections with similar group structural 
features;

•	 establishing the nature and parameters of the 
distribution of individual structural features within 
the formed homogeneous groups of elementary 
street and road sections;

•	 identifying representative elementary sections 
of streets and roads based on the distribution 
parameters of the individual structural features 
within the formed homogeneous groups.
In the first step of implementation of the 

step-by-step iterative procedure for finding the 
representative sections, the URN is divided into 
groups of elements - streets and roads that belong, 
in accordance with the current classification of roads, 
to the following categories: city-wide main streets, 
district main streets, and local streets and roads. 
Then, within each of the formed groups of streets and 
roads, the URN elements are divided into sections 
characterized by specific group and individual 
structural features. A section is defined as a part of 
a street or road of a particular category between the 
two closest intersections, within which the structural 
configuration of the section remains consistent.

In this context, it should be noted that the 
functioning of traffic flows on the streets and roads 
of a city is influenced by various factors, with 
road conditions often playing a decisive role in the 
main parameters of traffic flow. The more frequently 
road conditions change along a street, the more 
complex the interaction of vehicles in the traffic flow 
becomes. Therefore, in light of these circumstances, 
the decision was made to consider the city’s streets 
and roads as a set of elementary sections.

The structural features of the elementary sections 
of URN were determined using the cartographic 
web service Google Maps [35], specifically through 
the combined use of this web service, its Measure 
Distance tool, and the regulatory document DBN 
B.2.3-5:2018, which specifies the parameters of 
various types of cross-sectional profiles of roadways 
for streets and roads in settlements according to their 
category.

After this, homogeneous groups (clusters) 
containing elementary sections with common group 
structural features are formed. As a result of the 
step-by-step clustering, city-wide main streets were 

3.2	 Formation of a rational traffic flow 
monitoring network

The primary goal of forming a rational traffic 
monitoring network is to ensure, on the one hand, the 
acquisition of reliable information about the current 
state of the URN and, on the other hand, to reduce 
the volume of observations required to monitor the 
dynamics of TF on URN sections.

In this work, the formation of such a monitoring 
network is based on the assumption outlined in 
section 3.1. It is proposed to form a rational TF 
monitoring network on URN sections for the Kyiv city 
by implementing a step-by-step iterative procedure 
to identify the representative elementary sections 
within specific homogeneous URN clusters using 
the k-means clustering method [27-28]. On these 
sections, it is recommended to place expensive traffic 
sensors that can fully measure the main dynamic 
characteristics of TF (average speed v , intensity q, 
density t ). On other sections, it is sufficient to place 
inexpensive sensors that measure TF intensity q.

The formation of homogeneous clusters that 
comprise the URN is carried out according to certain 
individual and group structural characteristics of 
streets and roads, in stages, with different numbers 
of steps in the partitioning of the URN, separately 
for each category of streets and roads (according 
to DBN B.2.3-5:2018) [34], until the minimum 
discrepancies between the values of the analyzed 
structural characteristics of URN elements in each 
formed cluster are achieved. Group and individual 
structural characteristics for each URN element are 
determined based on the magnitude of their impact 
on traffic parameters. The following are considered as 
group structural characteristics:
•	 The implemented traffic scheme concerning 

permitted directions of movement (one-way or 
two-way traffic);

•	 Parameters of the transverse profile of the roadway 
(number of lanes, lane width, etc.);

•	 The density of traffic signal regulation (the ratio 
of the number of traffic lights on each street to its 
total length).
This division is due to the fact that the impact 

of road conditions on the main TF parameters 
is often decisive, as the more frequently road 
conditions change along a street, the more complex 
the interaction between vehicles in the TF becomes.

At the same time, it should be noted that in this 
work, URN elements with a traffic signal regulation 
density not exceeding 0.5 were classified into separate 
clusters. This allowed for consideration of the impact 
of such traffic control devices as traffic lights on the 
dynamics (character) of TF.

The individual structural characteristics chosen 
is the parameters of the longitudinal profile of the 
roadway (length, area, slope, etc.).
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from different clusters are significantly different from 
each other.

As a result of the clustering, the identified 
elements of the studied urban road network (URN) of 
Kyiv reflect (in terms of structural features) 85% of 
the city-wide main street network, 90% of the district 
main street network, and approximately 80% of the 
local street and road network.

3.3	 Evaluation of dynamic characteristics  
of traffic flow on urban road network sections

The relationships between the intensity q and 
density t  is considered as a function of the average 
speed v  of a vehicle in the domain of dense 
traffic flow, where, according to [26], the regimes of 
synchronized movement and wide moving vehicle 
clusters are realized. Here, the average speed v  of 
the traffic flow (TF) becomes variable. The evaluation 
of TF dynamic characteristics on URN sections 
using data from the rational monitoring network 
was carried out under the assumption described in 
section 3.1. In this case, the values of the dynamic 
characteristics v  are determined using the 
data obtained from the calibration curve of the q 
versus v  relationship (see 3.1). The procedure for 
constructing a family of calibration curves for the 
set of sections within each homogeneous cluster of 
the studied URN is described below. To do this, the 
functional relationship q q v= ^ h  is considered in 
the form of a polynomial:

q v a a v a vn
n

0 1 g= + + +^ h 	 (1)
 

and limit it to the cubic term.
Strictly speaking, Equation (1) should be 

divided into three clusters, district main streets into 
eight clusters, and local streets and roads into 32 
clusters.

In the next step, within each cluster, the average 
statistical values of each individual structural 
characteristic are established, which serve as 
the centers of gravity (centroids) of the formed 
homogeneous groups. These centroids are used 
to identify representative URN elements through 
hierarchical cluster analysis (see Figure 1).

In this case, within each cluster, as the 
representative section is selected the one where TF 
dynamics are observed in all its modes (free flow, 
synchronized flow, moving wide cluster, congestion) 
with the maximum distribution of TF intensity 
throughout the day.

As a result of the research, conducted within the 
framework of the method for forming a rational traffic 
flow monitoring network, representative sections were 
identified for the studied URN, which allowed for the 
creation of a rational monitoring network of TF. The 
dimensionality of this network is approximately 15 
times smaller than the dimensionality of the studied 
set of URN elements. The reduction in dimensionality 
of URN is achieved by representing the structure of 
URN as separate clusters, the elements of which 
are characterized by a high degree of similarity 
in terms of relevant structural features and the 
subsequent identification of typical elements (within 
each formed cluster), whose structural features, in 
general, provide a comprehensive understanding 
of both the structural state of the elements within 
each cluster and URN of the city as a whole. This is 
justified by, among other things, the main assertion 
of cluster analysis, which states that each cluster, 
as a result of such a multidimensional statistical 
procedure, consists of similar objects, while objects 

Figure 1 Dendrogram for Identifying a Representative URN Element  
(Example of a Homogeneous Cluster)
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values in the representative area r of cluster j: qmax rj^ h  
is the maximum value of TF intensity; q vmaxrj ^ h  is 
the TF intensity when the vehicle is moving at the 
maximum speed ;v q vmax minrj ^ h  is TF intensity 
when the vehicle is moving at the minimum speed 
vmin ; q v 0rj =^ h  is TF intensity when the vehicle 

is stationary v 0=^ h .
According to the assumption introduced, within 

a certain URN cluster, the shapes of the q q v= ^ h  
and v vt t=^ ^h h  curves for all sections of this 
URN cluster are similar and may differ only in their 
numerical values of the TF dynamic characteristics 
corresponding to these curves. This means that the 
normalization coefficients for a set of sections within 
a specific URN cluster j are identical.

Then, for any section i of a specific URN cluster 
j, the numerical values of the polynomial coefficients 
in cubic approximations , , ,a a aa0 1 2 3

) ) ) )  for 
q q vij ij=) ) ^ h  of section i can be determined by 
solving a linear system of three equations (3).

Here, qmax ij^ h  is the maximum TF intensity on 
section i of cluster j of the URN; q v

q
kmin
max

ij
j

qj

i
=) ^
^

h
h

 
is the TF intensity corresponding to vmin  on 
section i of cluster j; q v

q
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h
h

 is the 
TF intensity corresponding to vmax  on section i of 
cluster j. The values , ,q q v q vmax min maxij ij ij

) ) )^ ^ ^h h h  
are determined from the results of averaging the 
corresponding historical data over specific time 
intervals. In this case, the zero-order polynomial 
coefficient a

q
m
max

qj

ij
0 =

)^ h
 (the constant term in each 

equation of system - Equation (3)). After determining 
the polynomial coefficients , , ,a a aa0 1 2 3

) ) ) )  
according to Equation (3), the functional relationship 
q q vij ij=) ) ^ h  is constructed for each section i of 
the corresponding cluster j.

Thus, as a result of this procedure, a family of 
calibration curves of the approximated relationship 
q q v= ^ h  is formed on the URN sections for the 
entire set of homogeneous clusters that make up the 
studied URN.

Then, the procedure for simulation online discrete 
optimization with dynamic route updating is carried 
out using the selected AI method based on IoT data 
regarding q, obtained in real-time from each section 
of the studied URN. Here, during the optimization 
based on the time criterion, the calibration curves of 
the approximated relationship q q v= ^ h  are used 

considered at specific values of constt t=^ h . 
However, in general, especially in the domain of 
dense TF, const!t , so there is a more complex 
dependence q q v= ^ h  [30]. Nonetheless, for 
simulation process, it is sufficient to consider the 
dependence in this approximation, as it qualitatively 
captures the main features of TF behavior in the 
high-density region (synchronized flow, wide moving 
cluster, congestion) [30].

The following TF characteristics are introduced for 
a representative section r belonging to homogeneous 
cluster j v rj|  is the average speed of vehicles 
in the TF on section r of cluster j of the URN; 
q t

N
rj

rj

rj

T=  (vehicles/hour) is the TF intensity (the 
number of vehicles passing through a specific cross-
section of section r during the measurement time 
trjT , normalized to 1 hour); 

l
N

rj
rj

rj
t =  (vehicles/km) 

is the TF density (the number of vehicles moving on 
section r of length lrj, normalized to 1 km).

In the first stage, experimental measurements 
of qrj, rjt , v rj  are carried out on a specific URN 
section that is representative (r) for a specific j 
homogeneous cluster of sections of the studied URN. 
The experimental average values q qrj rj!T , 

,v vrj rj rj rj! !T Tt t  are determined. Here, 
, ,q vrj rj rjT T Tt  are the corresponding confidence 

intervals of the standard deviation. Based on the 
obtained experimental data, the relationships 
q q vrj rj= ^ h  are constructed. These relationships are 
approximated using polynomials in Equation (1) within 
the framework of regression analysis, determining 
the corresponding sets of coefficients , ,a a an0 1 f  
for the representative sections. Additionally, from 
the obtained polynomial relationships q q vrj rj= ^ h , 
as well as from empirical data, the values 

,v q vmin maxrj rj ^ h , ,v q q vmax minrj rj^ ^h h , qmax rj^ h , 
q v 0rj =^ h  are determined. The latter value 
corresponds to a traffic jam. Based on this data, 
normalization coefficients are formed, which 
characterize the shape of the curves of the q q v= ^ h  
relationship on the corresponding i sections of 
homogeneous cluster j of the URN. Namely:
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The system considers the freight delivery route 
optimization problem as an asymmetric dynamic 
traveling salesman problem (DTSP) represented as 
a weighted bidirectional graph in the context of the 
URN (see section 3.1). The general scheme of the 
system operation is shown in Figure 2.

In this case, the route optimization process is 
performed based on either distance or time criteria. 
For distance optimization, it is sufficient to use 
the structural data of URN sections. For time 
optimization, the system uses input data from the 
structural parameters of URN sections and the 
v  values obtained directly from traffic sensors on 

representative sections, as well as from the family 
of calibration curves q q v= ^ h  for other sections 
within each homogeneous URN cluster (see sections 
3.1-3.3).

As shown in Figure 2, the system allows the user 
to input a set of delivery points and depot. The system 
then constructs a weighted bidirectional graph, where 
the nodes correspond to the delivery points and the 
depot. Each edge of the graph consists of a sequence 
of URN sections; whose traversal determines the 
optimal route between the corresponding pair of 
delivery points at a specific time of day. Each such 
URN section in the sequence is characterized by a 

to determine the average TF speed v  on the URN 
sections at specific moments in time. Then, the time 
to traverse each section i of cluster j is determined as 
t

v
l

ij
ij

ij
= , where ,l vij ij  are the length and average 

TF speed on section i of cluster j, respectively.
It is also worth noting that certain difficulties 

arise in determining v ij  from the calibration curve, 
as the same intensity value may correspond to two 
different v ij  values. To avoid this ambiguity, it 
is necessary to use the results of historical data on 
density t  versus average speed v  obtained on 
representative sections, or the results of real-time 
traffic observation analysis on the corresponding 
URN sections at specific times of the day.

3.4	 Adaptive system for dynamic routing under 
limited traffic information

An adaptive system for dynamic routing of freight 
delivery is understood as an information system 
designed to re-optimize the delivery route in real-
time as the state of the URN changes due to changes 
in TF characteristics on URN sections during the 
freight delivery process [11].

Figure 2 Flowchart of the adaptive system for dynamic routing of freight delivery within  
the DTSP problem using the data on changing TF characteristics on URN sections



D Y N A M I C  R O U T I N G  I N  U R B A N  T R A N S P O R T  L O G I S T I C S  U N D E R  L I M I T E D  T R A F F I C  I N F O R M A T I O N 	 E29

V O L U M E  2 7 	 C O M M U N I C A T I O N S    2 / 2 0 2 5

3 shows the location of delivery points on the Kyiv 
map. The task was to find the optimal time-based 
route for a vehicle departing from the depot (point 0) 
on September 25, 2023, at 07:30:00, delivering goods 
to points 1-18, and returning to the depot.

The simulation studies were conducted with the 
following assumptions:
•	 The type of delivery route is a circular route with 

sequential delivery of goods;
•	 The date and time of day are taken into account, 

but the unloading time at delivery points, the 
nomenclature, weight, and volume of the cargo are 
not considered;

•	 Each edge of the graph corresponds to a fixed 
sequence of URN sections, describing the optimal 
path between each pair of delivery points;

•	 Changes in the expected travel time between nodes 
depend on current changes in TF characteristics on 
URN sections;

•	 Graph updates and route re-optimization are 
performed while the vehicle is at a delivery point.
To perform the dynamic routing of the delivery 

process, a basic implementation of the proposed 
adaptive system was developed on the .NET 
6 platform using the C# programming language. 
The studies were conducted on equipment with an 
Intel(R) Core(TM) i5-8400 CPU @ 2.80GHz processor, 
16 GB of DDR4 RAM, and running Windows 10. The 
studies showed that the initial construction of the 
graph with 19 nodes using GIS data took an average 
of 18.11 seconds, updating the graph based on current 
information from the traffic sensors took 594 ms 
(excluding the time to receive information from the 
traffic sensors), and finding the optimal solution 
for the graph with 19 nodes by performing 1000 
iterations of ACOmod took an average of 2.67 seconds.

The input data array for the dynamic TF 
characteristics was formed using the q, t  and v  
data obtained from field experiments conducted on 
representative sections, and the q data obtained in 
real-time from traffic sensors located on the sections 
of the studied URN. This is due to the fact that Flir 
Traficam 2 sensors [38], which are currently used on 
the URN sections of Kyiv, measure only TF intensity 
t  in real-time with a discretization of 2 minutes. 
Therefore, to construct a family of calibration curves 
of the approximated q q v= ^ h  relationship on URN 
sections for the entire set of homogeneous clusters, 
field experiments were conducted to determine q, t  
and v  on the representative sections of each URN 
cluster. During the working days from September 
11, 2023, to September 15, 2023, the corresponding 
values of q, t  and v  were measured. Averaging 
was carried out over five measurements. As an 
example, Figure 4 shows graphs of the dependence 
of average intensity and average density on the 
average speed of TF for a representative URN section 
- Brovary Avenue, exit (Chernihiv direction), which 

certain identifier (road name), length, number of 
lanes, and traffic direction. In the proposed system, 
the creation of such a graph is based on GIS data. 
As shown in Figure 2, for each pair of points (i, j) 
system queries GIS to retrieve the route from point i 
to j including a sequence of URN sections in the route 
and preprocesses this information for subsequent use 
in graph updates. This data can be obtained using the 
Routes API service of Bing Maps [36].

After the graph is formed, a procedure is 
performed to update the graph according to the 
current state of the URN at a specific time of day. 
The update procedure involves obtaining the real-
time data on the current TF intensity from traffic 
sensors located on the corresponding URN sections 
for each section that characterizes each edge of the 
graph. Using this data and the family of calibration 
curves q q v= ^ h  constructed based on historical 
data on URN characteristics for representative 
sections of homogeneous clusters, the current average 
speed of TF on each URN section is determined 
in the corresponding traffic direction. Using the 
current speed values on the URN sections and the 
structural parameters of each section, the expected 
time to travel the corresponding section is calculated. 
Ultimately, this allows determining the expected 
time to traverse each graph edge as the sum of the 
expected times to traverse the sequence of URN 
sections that characterize the corresponding graph 
edge (see Figure 2). Thus, the weights of the edges of 
the updated graph are characterized by the expected 
traversal time of each edge, taking into account 
both the current TF dynamics and the actual URN 
configuration.

After updating the graph, the freight delivery 
route optimization procedure is carried out using the 
modified ant colony algorithm ACOmod (see section 3.1, 
Figure 2). According to the determined optimal route, 
the user is directed to the next delivery point.

Upon the user’s arrival at this point, the next 
graph update is performed according to the current 
URN state. After that, the route re-optimization 
procedure is carried out using ACOmod on the updated 
graph. The proposed ACOmod implementation allows 
fixing the optimal configuration of the partially 
traversed route before updating the graph, as well. 
Thus, within the proposed adaptive dynamic routing 
system, the route re-optimization procedure is carried 
out until the user is directed back to the depot after 
completing deliveries to all the specified points.

4	 Results and discussion

For the simulation studies, 19 points on the 
URN of Kyiv were selected (numbered from 0 to 18), 
corresponding to the addresses of branches of the 
Ukrainian postal operator “Nova Poshta” [37]. Figure 
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data on traffic flow density in similar time periods 
relative to the current one for the representative 
sections of homogeneous clusters.

Table 1 presents the traffic flow characteristics 
of some URN sections used in the simulation studies. 
The column “Time” specifies the time at which the 
traffic data was recorded. For each URN section, 

belongs to a homogeneous cluster of the city-wide 
main streets.

As can be seen from Figure 4(a), a single intensity 
value can correspond to two different speed values: 
the left-hand wing of the curve corresponds to dense 
traffic, and the right-hand wing to free flow. The 
current traffic mode is determined based on historical 

Figure 3 Locations of the depot (0) and delivery points (1, …, 18) on the map of Kyiv

         
(a)                                                                                            (b)

Figure 4 Graphs of the dependence of average intensity (a) and average density (b) on the average speed of traffic flow 
based on field experiments: points represent the average values of the TF dynamic parameters; line segments indicate 

confidence intervals
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complete the optimal route in seconds within the 
DTSP, obtained from the corresponding optimization 
results; the column “Current” contains the expected 
time of the current optimal route at the time of 
re-optimization; the column “Previous” contains the 
expected time of the optimal route obtained from the 
previous re-optimization, but for the current dynamic 
state of the URN; the column “Initial” contains the 
expected time of the optimal route obtained from the 
optimization at the time of departure from the depot, 
but for the current dynamic state of the URN. In 
parentheses is the part of the route that is rebuilt as 
a result of re-optimization.

As seen in Table 2, during the simulation 
studies using the proposed method of online dynamic 
freight delivery routing, several effects related to the 
rebuilding of the optimal route were observed. For 
example, significant route rebuilding occurs at the 
times 07:55:20, 08:04:05, and 09:01:28. Additionally, 
in all the cases, a significant increase in delivery 
time for the initial configuration of the optimal route 
is observed at the current times of day compared to 

two sub-columns are provided: q is experimental 
traffic flow intensity (vehicles per hour, v/h); v  
is average traffic flow speed (kilometers per hour, 
km/h) calculated based on the intensity. The included 
URN sections, with the moving direction specified 
in brackets, are as follows: Section 1 is Beresteiskyi 
Avenue (SE), Section 2 is Avtozavodska Street (SE), 
Section 3 is Akademika Zabolotnoho Street (SE), 
Section 4 is Akademika Zabolotnoho Street (NW), 
Section 5 is Petra Hryhorenka Avenue (SE), Section 
6 is Nauky Avenue (SE).

Table 2 presents the results of the simulation 
study of dynamic freight delivery routing to the 
specified points of the “Nova Poshta” postal operator 
(some re-optimization steps that did not result in 
route reconstruction are not shown). The column 
“Current time” contains the current time of day; 
the column “Proposed route” contains the current 
optimal delivery route, with the current delivery 
point where re-optimization is performed marked 
with an asterisk (*); the column “Optimal route 
expected time” contains the expected time to 

Table 1 Traffic flow characteristics of some URN sections used in simulation studies

Time Section 1 Section 2 Section 3 Section 4 Section 5 Section 6

q v q v q v q v q v q v

07:30:00 3246 32 1465 36 2190 23 1752 37 673 50 500 50

07:55:20 2488 41.5 2237 19.5 2340 23 1758 37 659 50 675 50

08:13:20 1895 47 2366 19 2322 23 1650 9.5 840 5 683 50

08:37:27 2164 44.5 2777 19 2328 23 1968 14 779 4 930 39

09:01:28 2336 43 1735 30.5 1896 34 1992 14.5 866 47 810 43.5

09:18:01 2222 44 1915 26 1968 32 2022 15 953 44.5 765 46

09:34:39 1667 49 1388 37.5 2286 23 1842 12 913 45.5 908 39.5

09:48:22 3132 34 1414 37 2238 23 1854 12 973 44 818 43.5

10:07:39 3094 34.5 1067 48 1975 32 1598 40 773 50 882 40.5

10:21:01 2993 36 1272 40 1873 34.5 1707 38 986 43.5 720 50

Table 2 Results of dynamic freight delivery routing in the URN of Kyiv

Current 
time

Proposed route Optimal route expected time, s

Current Previous Initial

07:30:00 0*1-18-2-4-7-13-9-5-12-10-15-11-8-17-16-3-6-14-0 10390 - -

07:40:14 0-1*18-2-4-13-9-5-7-12-10-15-11-(17-8)-16-3-6-14-0 10486 10525 10525

07:55:20 0-1-18*2-4-13-(9-12-10-15-17-11-8-16-3-6-5-7-14)-0 10438 10486 10525

08:04:05 0-1-18-2*4-13-(9-14-3-16-15-11-17-8-10-6-12-5-7)-0 12632 17696 15663

08:13:20 0-1-18-2-4*13-9-14-3-16-15-11-17-8-10-6-12-5-7-0 11845 11845 13477

08:23:13 0-1-18-2-4-13*9-14-3-16-15-11-17-8-10-6-12-5-7-0 11887 11887 14136

08:37:27 0-1-18-2-4-13-9*14-3-16-15-11-17-8-10-6-12-5-7-0 12220 12220 15015

08:52:17 0-1-18-2-4-13-9-14*3-16-15-11-17-8-10-6-12-5-7-0 11800 11800 14727

09:01:28 0-1-18-2-4-13-9-14-3*(10-15-11-17-8-16-6)-12-5-7-0 10732 10832 12590

09:13:05 0-1-18-2-4-13-9-14-3-10*15-11-17-8-16-6-12-5-7-0 10704 10704 13252

10:21:01 0-1-18-2-4-13-9-14-3-10-15-11-17-8-16-6-12-5-7*0 10746 10746 16742

10:29:06 0-1-18-2-4-13-9-14-3-10-15-11-17-8-16-6-12-5-7-0* - 10746 16742
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consideration of the actual URN configuration 
and the real TF dynamics on its sections during 
transportation. The optimization problem is solved 
using an asymmetric DTSP, where the URN is 
represented as a weighted bidirectional graph.

The results of simulation studies, conducted on 
the example of Kyiv’s URN, indicate the potential of 
the proposed method for use by transport companies 
and authorities in urban transport logistics under 
complex traffic conditions.

In the future, the results of the research could 
contribute to a promising approach to reducing 
the carbon footprint. The method facilitates the 
integration of environmental considerations, 
particularly through the route optimization based 
on criteria such as fuel consumption and CO2 
emissions. Aligned with corporate sustainability 
goals, this creates opportunities to integrate 
reporting and decarbonization mechanisms into 
the transport logistics. Furthermore, the proposed 
method could serve as a foundation for developing 
a dynamic routing system that considers not only 
transportation costs and pollutant emissions but 
the economic incentives for minimizing emissions, 
such as carbon credits, as well. This would provide a 
comprehensive approach to enhancing the efficiency 
of transport logistics and reducing its environmental  
impact.
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the time of the initial optimal route built at 07:30:00 
(see Table 2). These effects are due to a significant 
increase and redistribution of the number of vehicles 
on the URN sections at the corresponding times of 
day. Re-optimization allows for finding such optimal 
routes in real-time, leading to a significant reduction 
in delivery time to the correspondent points. For 
example, at 08:04:05, the initial optimal route 
expected time is 15663 seconds, while the current 
optimal route expected time is 12632 seconds. This 
means that after re-optimizing the route at delivery 
point 2 (see Table 2), the delivery time is reduced 
by Δt =15663 s - 12632 s = 3031 s, representing an 
economic effect of 19.4%.

Thus, the results of the studies conducted within 
the framework of the online dynamic routing method 
under the limited traffic information indicate the 
potential of using the proposed method for urban 
transport logistics in conditions of complex traffic.

5	 Conclusions and recommendations

A method for online adaptive dynamic routing 
of freight delivery in cities under limited traffic 
information has been proposed. This method is 
based on the use of real-time IoT data on traffic flow 
intensity from the traffic sensors on URN sections and 
averaged historical data on TF parameters (speed, 
density, intensity) obtained from traffic sensors on 
representative sections of homogeneous clusters that 
make up the URN. An algorithm for forming a 
rational TF monitoring network in the URN has been 
developed based on the k-means clustering method 
to identify homogeneous clusters that constitute the 
URN and the representative sections within them.

An automated adaptive information system for 
dynamic routing in urban transport logistics under 
limited traffic information has been developed. This 
system includes a procedure for online optimization 
with dynamic route updating using a modified AI ant 
colony algorithm. The system allows for simultaneous 

References

[1]	 POP, P. C., COSMA, O., SABO, C., SITAR, C. P. A comprehensive survey on the generalized traveling salesman 
problem. European Journal of Operational Research [online]. 2024, 314(3), p. 819-835 [accessed 2024-08-10]. 
ISSN 0377-2217. Available from: https://doi.org/10.1016/j.ejor.2023.07.022

[2]	 SAWIK, B. Optimizing last-mile delivery: a multi-criteria approach with automated smart lockers, capillary 
distribution and crowdshipping. Logistics [online]. 2024, 8(2), 52 [accessed 2024-08-10]. ISSN 2305-6290. 
Available from: https://doi.org/10.3390/logistics8020052 

[3]	 GIUFFRIDA, N., FAJARDO-CALDERIN, J., MASEGOSA, A. D., WERNER, F., STEUDTER, M., PILLA, F. 
Optimization and machine learning applied to last-mile logistics: a review. Sustainability [online]. 2022, 14(9), 
5329 [accessed 2024-08-10]. ISSN 2071-1050. Available from: https://doi.org/10.3390/su14095329 

[4]	 ZHANG, H., ZHANG, Q., MA, L., LIU, Y. A hybrid ant colony optimization algorithm for a multi-objective vehicle 
routing problem with flexible time windows. Information Sciences [online]. 2019, 490, p. 166-190 [accessed 2024-
08-10]. ISSN 0020-0255. Available from: https://doi.org/10.1016/j.ins.2019.03.070 

https://doi.org/10.1016/j.ejor.2023.07.022
https://doi.org/10.3390/logistics8020052
https://doi.org/10.3390/su14095329
https://doi.org/10.1016/j.ins.2019.03.070


D Y N A M I C  R O U T I N G  I N  U R B A N  T R A N S P O R T  L O G I S T I C S  U N D E R  L I M I T E D  T R A F F I C  I N F O R M A T I O N 	 E33

V O L U M E  2 7 	 C O M M U N I C A T I O N S    2 / 2 0 2 5

[5]	 BELHAIZA, S., M’HALLAH, R., BRAHIM, G. B., LAPORTE, G. Three multi-start data-driven evolutionary 
heuristics for the vehicle routing problem with multiple time windows. Journal of Heuristics [online]. 2019, 25(3), 
p. 485-515 [accessed 2024-08-10]. ISSN 1572-9397. Available from: https://doi.org/10.1007/s10732-019-09412-1 

[6]	 HOOGEBOOM, M., DULLAERT, W. Vehicle routing with arrival time diversification. European Journal of 
Operational Research [online]. 2019, 275(1), p. 93-107 [accessed 2024-08-10]. ISSN 0377-2217. Available from: 
https://doi.org/10.1016/j.ejor.2018.11.020 

[7]	 XU, Y. Logistics distribution for path optimization using artificial neural network and decision support system. 
Research Square [online]. 2022, p. 1-17 [accessed 2024-08-10]. Available from: https://doi.org/10.21203/rs.3.rs-
1249887/v1 

[8]	 YUAN, J., SONG, J., ZHANG, Y., JIANG, C., XU, F. Planning of dynamic routing of logistics in urban public 
sports facilities based on MAS. In: 4th International Conference on Transportation Engineering: proceedings. 
2013. ISBN 9780784413159. p. 1156-1162.

[9]	 ABOUSAEIDI, M., FAUZI, R., MUHAMAD, R. Geographic Information System (GIS) modeling approach to 
determine the fastest delivery routes. Saudi Journal of Biological Sciences [online]. 2015, 23(5), p. 1-27 [accessed 
2024-08-13]. ISSN 1319-562X. Available from: https://doi.org/10.1016/j.sjbs.2015.06.004 

[10]	ROTHKRANTZ, L. Hybrid dynamic route planners. In: 19th International Conference on Computer Systems and 
Technologies: proceedings. ACM, 2018. ISBN 9781450364256. p. 12-19.

[11]	TSOUKAS, V., BOUMPA, E., CHIOKTOUR, V., KALAFATI, M., SPATHOULAS, G., KAKAROUNTAS, A. 
Development of a dynamically adaptable routing system for data analytics insights in logistic services. Analytics 
[online]. 2023, 2(2), p. 328-345 [accessed 2024-08-13]. ISSN 2813-2203. Available from: https://doi.org/10.3390/
analytics2020018 

[12]	LYU, Z., PONS, D., ZHANG, Y, JI, Z. Freight operations modelling for urban delivery and pickup with 
flexible routing: cluster transport modelling incorporating discrete-event simulation and GIS. Infrastructures 
[online]. 2021, 6(12), 18. ISSN 2412-3811 [accessed 2024-08-13]. Available from: https://doi.org/10.3390/
infrastructures6120180

[13]	RAZA, S., AL-KAISY, A., TEIXEIRA, R., MEYER, B. The role of GNSS-RTN in transportation applications. 
Encyclopedia [online]. 2022, 2(3), p. 1237-1249 [accessed 2024-08-13]. ISSN 2673-8392. Available from:  
https://doi.org/10.3390/encyclopedia2030083

[14]	BASTOS, L., BUIST, P., CEFALO, R., GONCALVES, J. A. Kinematic Galileo and GPS performances in aerial, 
terrestrial, and maritime environments. Remote Sensing [online]. 2022, 14(14), 3414 [accessed 2024-08-14].  
ISSN 2074-4292. Available from: https://doi.org/10.3390/rs14143414 

[15]	BADOLE, M. H., THAKARE, A. D. An optimized framework for VANET routing: a multi-objective hybrid model 
for data synchronization with digital twin. International Journal of Intelligent Networks [online]. 2023, 4, p. 
272-282 [accessed 2024-08-14]. ISSN 2666-6030. Available from: https://doi.org/10.1016/j.ijin.2023.10.001 

[16]	SAOUD, B., SHAYEA, I., YAHYA, A. E., SHAMSAN, Z. A., ALHAMMADI, A., ALAWAD, M. A., ALKHRIJAH, 
Y. Artificial Intelligence, Internet of things and 6G methodologies in the context of Vehicular Ad-hoc Networks 
(VANETs): survey. ICT Express [online]. 2024, 10(4), p. 959-980 [accessed 2024-08-14]. ISSN 2405-9595. 
Available from: https://doi.org/10.1016/j.icte.2024.05.008 

[17]	MOUHCINE, E., MANSOURI, K., MOHAMED, Y. Solving traffic routing system using VANet strategy combined 
with a distributed swarm intelligence optimization. Journal of Computer Science [online]. 2019, 14(11), p. 1499-
1511 [accessed 2024-08-15]. ISSN 1549-3636. Available from: https://doi.org/10.3844/jcssp.2018.1499.1511 

[18]	PARK, J., MURPHEY, Y. L., MCGEE, R., KRISTINSSON, J. G., KUANG M. L., PHILLIPS, A. M. Intelligent 
trip modeling for the prediction of an origin-destination traveling speed profile. IEEE Transactions on Intelligent 
Transportation Systems [online]. 2014, 15(3), p. 1039-1053 [accessed 2024-08-15]. ISSN 1558-0016. Available 
from: https://doi.org/10.1109/tits.2013.2294934 

[19]	CHAI, H., ZHANG, H. M., GHOSAL, D., CHUAH C.-N. Dynamic traffic routing in a network with adaptive signal 
control. Transportation Research Part C: Emerging Technologies [online]. 2017, 85, p. 64-85 [accessed 2024-08-
16]. ISSN 0968-090X. Available from: https://doi.org/10.1016/j.trc.2017.08.017 

[20]	YAVUZ, M. N., OZEN, H. Calibration of microscopic traffic simulation of urban road network including mini-
roundabouts and unsignalized intersection using open-source simulation tool. Scientific Journal of Silesian 
University of Technology. Series Transport [online]. 2024, 122, p. 305-318 [accessed 2024-08-16]. ISSN 2450-1549. 
Available from: https://doi.org/10.20858/sjsutst.2024.122.17 

[21]	RUSSO, F., COMI, A. Sustainable urban delivery: the learning process of path costs enhanced by information 
and communication technologies. Sustainability [online]. 2021, 13(23), 13103 [accessed 2024-08-18].  
ISSN 2071-1050. Available from: https://doi.org/10.3390/su132313103 

[22]	DANCHUK, V., COMI, A., WEISS, C., SVATKO, V. The optimization of cargo delivery processes with dynamic 
route updates in smart logistics. Eastern-European Journal of Enterprise Technologies [online]. 2023, 2(3),  
p. 64-73 [accessed 2024-08-18]. ISSN 1729-4061. Available from: https://doi.org/10.15587/1729-4061.2023.277583 

https://doi.org/10.1007/s10732-019-09412-1
https://doi.org/10.1016/j.ejor.2018.11.020
https://doi.org/10.21203/rs.3.rs-1249887/v1
https://doi.org/10.21203/rs.3.rs-1249887/v1
https://doi.org/10.1016/j.sjbs.2015.06.004
https://doi.org/10.3390/analytics2020018
https://doi.org/10.3390/analytics2020018
https://doi.org/10.3390/infrastructures6120180
https://doi.org/10.3390/infrastructures6120180
https://doi.org/10.3390/encyclopedia2030083
https://doi.org/10.3390/rs14143414
https://doi.org/10.1016/j.ijin.2023.10.001
https://doi.org/10.1016/j.icte.2024.05.008
https://doi.org/10.3844/jcssp.2018.1499.1511
https://doi.org/10.1109/tits.2013.2294934
https://doi.org/10.1016/j.trc.2017.08.017
https://doi.org/10.20858/sjsutst.2024.122.17
https://doi.org/10.3390/su132313103
https://doi.org/10.15587/1729-4061.2023.277583


E34 	 D A N C H U K  e t  a l .

C O M M U N I C A T I O N S    2 / 2 0 2 5 	 V O L U M E  2 7

[23]	ZHANG, N. Smart logistics path for cyber-physical systems with internet of things. IEEE Access [online]. 
2018, 6, p. 70808-70819 [accessed 2024-08-18]. ISSN 2169-3536. Available from: https://doi.org/10.1109/
access.2018.2879966 

[24]	NG, K. K. H., LEE, C. K. M., ZHANG, S. Z., WU, K., HO, W. A multiple colonies artificial bee colony algorithm 
for a capacitated vehicle routing problem and re-routing strategies under time-dependent traffic congestion. 
Computers and Industrial Engineering [online]. 2017, 109, p. 151-168 [accessed 2024-08-18]. ISSN 0360-8352. 
Available from: https://doi.org/10.1016/j.cie.2017.05.004 

[25]	ZAJKANI, M. A., BAGHDORANI, R. R., HAERI, M. Model predictive based approach to solve DVRP with 
traffic congestion. IFAC-PapersOnLine [online]. 2021, 54(21), p. 163-167 [accessed 2024-08-19]. ISSN 2405-8963. 
Available from: https://doi.org/10.1016/j.ifacol.2021.12.028 

[26]	LIU, H., LEE, A., LEE, W., GUO. P. DAACO: adaptive dynamic quantity of ant ACO algorithm to solve the 
traveling salesman problem. Complex and Intelligent Systems [online]. 2023, 9, p. 4317-4330 [accessed 2024-08-
19]. ISSN 2198-6053. Available from: https://doi.org/10.1007/s40747-022-00949-6 

[27]	ARTHUR, D., VASSILVITSKII, S. K-means++: the advantages of careful seeding. In: 18th Annual ACM-SIAM 
Symposium on Discrete Algorithms: proceedings. 2007. p. 1027-1035.

[28]	LIKAS, A., VLASSIS, N., VERBEEK., J. J. The global k-means clustering algorithm. Pattern Recognition 
[online]. 2003, 36(2), p. 451-461 [accessed 2024-08-17]. ISSN 0031-3203. Available from: https://doi.org/10.1016/
s0031-3203(02)00060-2 

[29]	DORIGO, M., DI CARO, G. The ant colony optimization meta-heuristic. In: New idea in optimization. CORNE, 
D., DORIGO, M., GLOVER, F. (Eds.). London: McGrow-Hill, 1999. ISBN 9780077095062, p. 11-32.

[30]	KERNER, B. S. Introduction to Modern Traffic Flow Theory and Control. Berlin, Heidelberg: Springer Berlin 
Heidelberg, 2009. ISBN 9783642026041.

[31]	PUCHKOVSKA, G. O., MAKARENKO, S. P., DANCHUK, V. D., KRAVCHUK, A. P., BARAN, J., KOTELNIKOVA, 
E. N., FILATOV, S. K. Dynamics of molecules and phase transitions in the crystals of pure and binary mixtures 
of n-paraffins. Journal of Molecular Structure [online]. 2002, 614(1-3), p. 159-166 [accessed 2024-08-25].  
ISSN 0022-2860. Available from: https://doi.org/10.1016/s0022-2860(02)00237-5 

[32]	PUCHKOVSKA, G. O., DANCHUK, V. D., MAKARENKO, S. P., KRAVCHUK, A. P., KOTELNIKOVA, E. 
N., FILATOV, S. K. Resonance dynamical intermolecular interaction in the crystals of pure and binary 
mixture n-paraffins. Journal of Molecular Structure [online]. 2004, 708(1-3), p. 39-45 [accessed 2024-08-25].  
ISSN 0022-2860. Available from: https://doi.org/10.1016/j.molstruc.2004.02.010 

[33]	DANCHUK, V. D., KOZAK, L. S., DANCHUK, M. V. Stress testing of business activity using the synergetic 
method of risk assessment. Actual Problems of Economics. 2015, 171(9), p. 189-198. ISSN 1993-6788.

[34]	DBN B.2.3-5: 2018 DBN V.2.3-5:2018. Streets and roads of settlements / Vulytsi ta dorohy naselenykh punktiv. 
Minrehionbud (in Ukrainien) [online] [accessed 2024-08-25]. Available from: https://e-construction.gov.ua/
laws_detail/3199686959802877315?doc_type=2 

[35]	Google maps [online] [accessed 2024-08-29]. Available from: https://www.google.com/maps 
[36]	Bing Maps Routes API - Microsoft Learn [online] [accessed 2024-08-29]. Available from: https://learn.microsoft.

com/en-us/bingmaps/rest-services/routes/ 
[37]	Nova Poshta branches map - Nova Poshta website [online] [accessed 2024-08-29]. Available from:  

https://novapost.com/en-ua/departments 
[38]	Flir official website [online] [accessed 2024-08-29]. Available from: https://www.flir.com/ 

https://doi.org/10.1109/access.2018.2879966
https://doi.org/10.1109/access.2018.2879966
https://doi.org/10.1016/j.cie.2017.05.004
https://doi.org/10.1016/j.ifacol.2021.12.028
https://doi.org/10.1007/s40747-022-00949-6
https://doi.org/10.1016/s0031-3203(02)00060-2
https://doi.org/10.1016/s0031-3203(02)00060-2
https://doi.org/10.1016/s0022-2860(02)00237-5
https://doi.org/10.1016/j.molstruc.2004.02.010
https://www.scopus.com/authid/detail.uri?authorId=58020561600
https://www.scopus.com/authid/detail.uri?authorId=57006314600
https://www.scopus.com/authid/detail.uri?authorId=56658749800
https://www.scopus.com/record/display.uri?eid=2-s2.0-84950115794&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-84950115794&origin=resultslist
https://e-construction.gov.ua/laws_detail/3199686959802877315?doc_type=2
https://e-construction.gov.ua/laws_detail/3199686959802877315?doc_type=2
https://www.google.com/maps
https://learn.microsoft.com/en-us/bingmaps/rest-services/routes/
https://learn.microsoft.com/en-us/bingmaps/rest-services/routes/
https://novapost.com/en-ua/departments
https://www.flir.com/

