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Resume
A genetic algorithm (GA) is an optimization technique based on natural 
genetics, using selection, crossover, and mutation. Crossover combines 
genetic material from two parents to create offspring, maintaining diversity 
and preventing premature convergence. While the two parents are typically 
used, multi-parent crossover, involving more than two parents, has shown 
superior results. in this paper is explored the multi-parent crossover in 
dual genetic algorithms, which facilitate information exchange between 
populations through interpolation crossbreeding. Offspring inherit traits 
from both parent populations, improving adaptability. The Cave-Surface 
GA (CSGA) with three-parent crossover is tested on 15 Travelling Salesman 
Problem (TSP) benchmarks. Results show that the CSGA outperforms both 
traditional GAs and two-parent CSGA. This method demonstrates great 
potential for complex optimization challenges.
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Creating the new crossover operators that fit into 
one of the many chromosomal representations is an 
important priority for many researchers. Regretfully, the 
majority of crossover operators’ offspring do not acquire 
sufficient information from their parents. Currently, 
a crossover operator’s multi-parent extension is employed 
to raise the quality of solutions for optimisation problems. 
Typically, crossover occurs between only two parents at 
a time, resulting in one or two offspring. Naturally, the 
multi-parent reproduction is not used by any species 
in the natural world. However, limiting the number of 
parents for crossover to two is not necessary in computer 
simulations [9].

Since the population maintains diversity, the GA 
are more resilient than other local search algorithms. 
Even now, it is still commonly seen that populations 
lose diversity too soon and that individuals are stuck 
in local optima, particularly in complex problems with 
many peaks in the fitness landscape, this issue is in the 
literature referred to as premature convergence [10-12]. 
Various methods have been used in numerous previous 
works to prevent the risk of premature convergence. 
These methods include: improving the genetic operators 
(mutation, crossover, and selection) [12-13], dynamic 

1	 Introduction 

Genetic algorithms (GAs) are efficient heuristic 
random search strategies that are inspired by 
evolutionary and natural selection theories [1-2]. In the 
1970s, Holland [3] investigated the fundamentals of GA. 
The GA examines a  population of chromosomes, each 
representing a  unique candidate solution to a  certain 
problem. The GA includes various operators, including 
selection, crossover, and mutation. These operators are 
employed for candidate solutions to achieve improved 
population generation [4-6]. 

Among the well-known operators in genetic 
algorithms is crossover. The crossover process is 
essential for creating new chromosomes by combining 
two or more parent chromosomes in the hopes that the 
result will be an efficient new chromosome. Crossover 
happens after the selection of parent chromosome pairs 
and aids in the exchange of information between parents 
in order to produce offspring. During the crossover, 
parent chromosomes are taken in pairs and their genes 
are transferred in a certain order to produce offspring. 
These offsprings become the parent chromosomes for the 
following generation [7-8]. 
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2	 Related work

The GAs primarily use two parents for crossover 
operations, which corresponds to the natural behaviour 
of evolution, in which individuals adopt only the two 
parents to generate an offspring. However, studies have 
shown that multi-parent crossover is more effective and 
more successful than the two-parent crossover [27-28].

One possible strategy to increase the GA performance 
is to add new features into the GA, i.e., features that 
do  not fit within the existing GA paradigm, some 
recent efforts employing the multi-parent recombination 
operators. An attempt to maintain the basic GA paradigm 
while improving the GA performance by permitting 
multi-parent reproduction [29]. Multi-parent crossover 
can be seen of as a  generalisation of conventional two 
parent crossover in terms of the number of parents. 
There have been many suggestions for the multi-parent 
crossover operators. In general, having more parents 
results in a more thorough survey to identify the genes 
of the offspring and increases the likelihood of either 
exploitation, exploration, or both [30].

Several multi-parent crossover methods have been 
developed for genetic algorithms such as scanning 
crossover [27], diagonal crossover [27], center of mass 
crossover, multi-parent feature-wise crossover, and seed 
crossover [31], simplex crossover [32]. Studies show that 
the multi-parent crossover is more effective than the 
two parent crossover. The performance of these multi-
parent crossovers is generally studied using numerical 
optimization problems [33]. 

To solve combinatorial optimization problems, only 
a  limited number of multi-parent crossovers have been 
used, including adjacency-based crossover (ABC) [27], 
multi-parent extension of partially mapped crossover 
(MPPMX) [33], multi-parent sequential constructive 
crossover (MPSCX) [9], extended precedence preservative 
crossover [34] and a  multi-parent order crossover 
(MPOX) [35].

The ABC is suitable for order-based representations, 
such as TSP, where value positioning is crucial. This 
crossover uses a marker update approach to pick genes 
from all parents and produce viable offspring, while this 
crossover resulted in a viable TSP child. 

The MPPMX [33] extends partially mapped crossover 
to address the multi-parent crossover. The proposed 
crossover changed the mapping list and legalisation 
method to include more parents in the partially mapped 
crossover.

The multi-parent sequential constructive crossover 
was developed to address the travelling salesman 
and job shop scheduling problem. Experiments were 
conducted to assess MPSCX performance with varying 
parent numbers and mutation probability. Experimental 
findings on TSPLIB instances demonstrate that MPSCX 
considerably increases solution quality.

The MPOX [35] extends the Order Crossover (OX) 
[36; this extension’s primary goal is to generate an 

parameter control [14], Multipopulation GA (MPGAs) 
[15], a  multi-objective evolutionary algorithm [16] and 
more.

The multi-population idea divides the population 
into subpopulations, each of which is more likely to 
follow a  different search path. The migration process 
exchanges good individuals between subpopulations, 
while the crossover operator creates new individual. 
The migration rate is the number of individuals that 
must be replaced between subpopulations, and it allows 
for control over the degree of diversity within the 
subpopulation. Migration interval, which affects the 
number of times migration occurs, is another element 
that encourages subpopulation variety [17] and [18].

Dual-population GA (DPGA) is a form of MPGA in 
which an additional population acts as a  reservoir of 
diversity. The main population is comparable to that of 
a traditional GA and evolves to find effective solutions. 
The reserve population evolves to support and diversify 
the main population. In contrast to MPGAs, which 
use migration to communicate information between 
populations, the DPGAs rely on crossbreeding due to 
their distinct fitness functions [19] and [20]. 

Crossbreeding is used by dual populations to 
share information amongst populations. Crossbreeding 
refers to a recombination of an individual from the 
main population and an individual from the reserve 
population. Since the offspring of this crossbreeding 
contain genetic material from both populations, their 
fitness values are generally high in either population, 
and they can serve as a means of information sharing. 

The TSP is an NP-hard problem in combinatorial 
optimization, as well as an old and challenging 
combinatorial mathematics topic. Enumeration makes 
it simple to find the shortest path between some cities 
[21-22]. If n is actually large, there are (n-1)! potential 
combinations, and the searching space of the routes 
will show a  pattern of explosive growth. Under these 
conditions, one cannot locate the ideal path using the 
conventional searching strategy. As a  result, several 
new types of optimization computation methods emerge 
to get the TSP’s optimal solution; among which, the GA 
receives the most favor of the public and becomes one of 
the most effective techniques to solve the TSP, because 
of its wide applicability and the character that does not 
require to get additional insight into the problems and 
depends less on the specific fields of the problem [23]. 

The GA is utilized not just to solve conventional 
TSPs, but in a  variety of other applications, as well, 
including transportation planning [24], location-based 
services [25] and urban design [26], etc.

In this paper, the contribution is to the topic of 
enhancing dual population GA performance employing 
three parents during population crossbreeding, in 
an attempt to promote gene variety and introduce 
significant features, as well as to reduce the premature 
convergence and so improve the performance of genetic 
algorithms. 
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individuals from the Surface population. Additionally, 
the surface population evolves predominantly by 
inbreeding among parents from the same population. 

A conventional GA selects two parent chromosomes 
for a cross-over procedure, yielding two offspring. 
The CSGA, on the other hand, has two more factors 
beyond GAs: the crossbreeding interval (CI) and the 
crossbreeding rate. The crossbreeding interval (CI) is 
the number of generations between each crossbreeding, 
whereas the cross-breeding rate (CR) is the number 
of individuals picked from each group during the 
cross-breeding. These factors affect both accuracy and 
computation time. CSGA generates two offsprings 
through each cross-over operator between the two 
parents by randomly selecting a number of parents from 
the two populations for recombination based on the 
crossbreeding rate. Following that, one of the children 
is chosen to join the Cave population’s next generation 
through selection for local survival, while the other is 
transported to the Surface population. In addition to 
being repeated for each of the two prospective parents, 
this process is only carried out through particular 
generations, depending on the CR rate. The pseudocode 
for CSGA is displayed in Algorithm 1 [37] (see Figure 1).

The MPOX [35] generalizes the Order Crossover 
(OX) to a multi-parent crossover. To cut each parent into 
substrings for an n-parent MPOX, n-1 crossing points 
generated randomly. The second chosen substring, 
which is between the first and second crossover points, 
is then duplicated into the newly created offspring at the 
same absolute position in the following step.

To create a viable offspring from multiple parents, 
the MPOX begins at the second crossover point of the 
second parent. It then selects the elements that are 
not already present in the offspring to fill in the gaps, 
starting from this crossover point (the third substring). 

acceptable solution from more than two parents that can 
handle various combinatorial challenges with efficacy. 
The berth allocation problem (BAP) and TSP have 
been used to analyse the original OX and MPOX. The 
outcomes demonstrate that MPOX outperforms the two-
parent OX and generates competitive performance for 
both benchmarks.

3	 Experimental settings and result

In the literature, the multiple parent crossovers 
have successfully demonstrated the power of using more 
parents. The effectiveness of these operations has been 
examined experimentally. The performance of MPOX 
has also been tested on travelling salesman problems, 
which have been widely studied in the literature. To 
examine the effectiveness of the multi parent crossover 
and its effect on the MPGA, and specifically on dual 
population, the multi-parent order crossover (MPOX) 
[35] was chosen as a  crossbreeding operator between 
dual population, Specifically in CSGA algorithm. 

In this paper, the CSGA algorithm are chosen 
[37], which uses two populations and is also a  type of 
MPGA. The CSGA method is inspired by the genetic 
diversity found in Mexican cavefish and is a variation of 
the Dual Population GA. Through the inter-population 
crossbreeding, the CSGA enhances variety via the 
secondary population (cave population) and enables 
information transmission between populations, 
effectively preventing the premature convergence.

The CSGA starts with two randomly generated 
populations: Cave and Surface. Individuals in each 
population are evaluated with the same fitness functions. 
The Cave population evolves by a combination of 
inbreeding within the population and crossbreeding with 

Figure 1 The CSGA Algorithm [37]
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selected to perform the experiments. Since the primary 
objective of the study was to validate the effectiveness of 
the CSGA with 3 parent crossover, the genetic algorithm 
and CSGA regardless of the parameters used, No 
complex parameter control procedures were utilized. The 
GA’s simple and standard parameters were used.

The fitness level of each individual was ascertained 
by a truncated selection process. Truncation selection is 
the simplest selection technique, and this is a common 
way to allocate the fitness function to each chromosome 
in the GA population. This kind of selection involves 
sorting the population based on fitness and then 
eliminating the proportion of people who are less fit [39]. 

Since one-point modified crossover and exchange 
mutation are two of the most straightforward approaches 
that have been applied to situations that are classified 
as permutation problems, they were employed for the 
reproduction process in our research [22]. One-point 
modified crossover creates the offspring by using the 
single point fragmentation of the parents and then 
combining the parents at the crossover point. One-point 
crossover chooses two parents for crossover and then 
chooses any crossover point at random. The parents 
are then combined at the crossover point to create two 
offspring. The frequency with which two chromosomes 
exchange some of their parts during a single generation 
is known as the crossover rate; crossover rate is in the 
range of [0,1] [7]. 

This process continues until the third substring of the 
offspring is fully populated.

Next, the MPOX moves to the fourth crossover 
point of the next parent, again choosing elements not 
included in the offspring and filling them in from that 
crossover point. This continues until the next crossover 
point or the end of the offspring is reached. Once all the 
parents have been processed, the MPOX starts over with 
the first parent, selecting any missing elements and 
copying them into the offspring from the beginning up 
to the second crossover point. This ensures the offspring 
is fully completed with all the necessary elements (see 
Figure 2 and Figure 3).

Going back to step 6 in the CSGA in Algorithm 1, 
MPOX crossover was used as a  crossbreeding operator 
between the two populations., where the two offspring 
are selected from the first population and one offspring 
from the second population. Two of the resulting 
individuals were sent to the first population, and one 
was sent to the second population. (see Figure 4). In this 
way, the population was aimed to be more diverse and 
thus reduce the premature convergence.

To investigate the effect of utilizing three parents in 
the crossbreeding of the CSGA algorithm, investigations 
were conducted in 15 instances from the TSPLIB [38]. 
The experiment was carried out ten times for each 
instance.

Table 1 displays the GA parameters that were 

Figure 2 MPOX with four parents [36]

Figure 3 An example of MPOX-based offspring production [36]
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Figure 4 CSGA method with 3 parents crossbreeding

Table 1 GA configuration

Parameter Value

Population size 200

Generation limit 3000

Initialization method Random

Crossover One-point modified 

Crossover rate 0.85

Mutation Exchange

Mutation rate 0.08

Selection Truncation Selection

Crossbreeding Rate 5

Crossbreeding Interval 7

Termination criteria Generation limit

Crossover type used in Crossbreeding MPOX
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The genetic algorithm’s basic parameters were 
purposefully and manually selected. Neither parameter 
tuning, nor intricate control processes, were used. 
Natural ratios for the crossover and mutation process 
were the crossover and mutation ratios. In addition, the 
population size was manual, as well as the number of 
generations, and this was fixed for all methods for fair 
comparison. Again, these parameters are standard, and 
are used in many researches. This strategy is consistent 
with our paper’s primary objective, which is to confirm 
the efficacy and emphasize the advantages of employing 

The exchange mutation randomly selects two genes 
and switches their locations. The mutation rate, which 
ranges from 0 to 1, specifies the number of chromosomes 
to be modified in a single generation [8]. 

Our GA employed the reinsertion method, which is 
an expansion sampling technique, in each experiment 
[40]. This technique ensures that only the best half of 
the population - from both the new and old generations 
- is chosen for the following generation. The old 
generation competes with the new individuals when a 
new generation is created. 

Table 2 The TSP instance results obtained through 3000 generations using GA and CSGA algorithms

Optimal 
Solution Instance

GA CSGA CSGA with 3 Parent 
Crossbreeding

Min Average Min Average Min Average 

2579 a280 6952 7587.1 5914‡ 6541.2‡ 6317 6575.7

10628 att48 35843 41766.4 35704 40468.3 35873 39482‡

7542 berlin52 8253‡ 9123.1‡ 8497 9572.5 8599 9247

118282 bier127 152453 170944.7 146855‡ 161837.4 149325 157590.6‡

6110 ch130 8865 10000.7 8768 9777.2 8442‡ 9335.8‡

6528 ch150 10114 10914.667 9965 10906 9455‡ 10314.6‡

426 eil51 465 478.3‡ 476 502.5 455‡ 493

21282 kroA100 27555 32230.6 27175 31655.4 26256‡ 28069.9‡

14379 lin105 20153 24129.1 20006 23199.1 17778‡ 21983.8‡

108159 pr76 134438 133195.82‡ 130101 143111.4 129849‡ 144835.2

58537 pr144 112926‡ 119005.8‡ 117911 134050.4 117026 128547

42029 lin318 125686 139947.1 112936‡ 119163.4‡ 117471 126146.1

202339 ali535 9484 10249.5 8418‡ 8827.6‡ 8713 9429.333

8806 rat783 51871 53879.1 46348‡ 47547‡ 49308 52293.4

29437 kroB200 58704 67404.5 57500 61319.4 51832‡ 59243.8‡

Figure 5 Average Convergence of each Algorithm in 15 instances
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The contribution of using a  crossover with three 
parent is observed in the attempt to find diversity in 
the dual population., despite not using any complex 
parameters, and the stability of the parameters for the 
two methods, the importance of using the crossover with 
3 parent is shown, and what also contributed to the 
diversity is sending the resulting individuals to the first 
population, which led to the diversity in the population 
by allowing the extraction of characteristics from the 
parents, and thus the resulting offspring possesses good 
characteristics from the three parents.

As can be seen from Table 3 and Figure 8, GA is 
the fastest algorithm in all the cases, showing that it 
requires the least computation. The CSGA takes more 
time than GA and CSGA with 3 Parent Crossbreeding 
takes the longest execution time. For small instances, 
GA might be sufficient. For large instances, CSGA or 
CSGA with 3 Parent Crossbreeding is preferable.

three parents throughout the crossbreeding process 
in comparison to the genetic algorithm in terms of 
diversity.

Table 2 summarizes the results of the three-parent 
crossover on TSP instances.

As demonstrated in Table 2, in 7 out of 15 cases, the 
CSGA with 3 parent crossover outperformed the CSGA 
and GAs. The CSCA with three-parent crossover also 
had the lowest costs in nine out of the fifteen cities, as 
can be seen in the table’s Min column. 

The Average convergence of each algorithm to 
a minimum value is shown in Figure 5. Once more, 
the CSGA with three parent crossover performs 
better in terms of convergence to a minimum value 
on KroA100 and ch130 than both CSGA and GA. The 
better convergence becomes possible by the population 
diversity that the CSGA with three parent crossover 
provides as shown in Figure 6 and 7.

Figure 6 The KroA100 Convergence of Min value

Figure 7 The ch130 Convergence of min value
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The CSGA with 3 Parent Crossbreeding achieves the 
best solutions, but takes the longest time to execute.

CSGA with 3 Parent Crossbreeding is only suitable 
if solution quality is more important than speed.

As Table 4 illustrates, the GA is the fastest but 
least effective in finding optimal solutions. The CSGA 
improves both the minimum and average solution 
values, while maintaining a reasonable execution time. 

Table 3 Time consumed by each method after 3000 generations

Instance
Time, ms 

GA CSGA CSGA with 3 Parent 
Crossbreeding

a280 48083 65754‡ 108230

att48 44117 55874 52664‡

berlin52 39001 58008 54515‡

bier127 46659 73485‡ 75473

ch130 44808 87922 70094‡

ch150 72956 69967‡ 76813

eil51 52743 37872 37174‡

kroA100 52028 45897‡ 57707

lin105 51643 53942‡ 58133

pr76 30063 38676‡ 40638

pr144 50496 63113‡ 65438

lin318 71389 86459‡ 106096

ali535 136794 294048 272006‡

rat783 96934 618016 427801‡

kroB200 105338 147291 143102‡

Figure 8 Time Consumed

Table 4 Trade-off between execution time and solution quality

Algorithm Solution Quality Execution Time

GA Worst Fastest

CSGA Good Moderate

CSGA with 3 Parent Crossbreeding Best Slows
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(e.g., CSGA) and yield beneficial results. However, it 
should be noted that a number of factors influence the 
genetic algorithm’s performance. In future studies, 
the inbreeding process will be carried out using multi-
parents and also the plan is to examine the effect of 
the number of parents in the multiparent crossover, 
and how it affects the inbreeding and crossbreeding 
process. Comprehensive tests and comparisons will 
be conducted in the next study., with the aim of 
providing a detailed assessment of the effectiveness 
of multiparent crossover in the multipopulation  
approach.
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4	 Conclusion 

The multi-parent crossover operator is one of the 
mechanisms used in evolutionary algorithms to improve 
the population diversity. Multi-parent crossovers 
have shown their superiority over the classic two-
parent crossovers in several problems as shown in 
the literature. In this paper, the performance of three 
parent crossover methods on MPGA was investigated., 
and more specifically on the crossbreeding process on 
CSGA. To tackle combinatorial optimisation problems, 
the MPOX crossover was selected, which is an extension 
of OX. This extension’s primary goal is to generate 
a  workable solution from more than two parents that 
can be applied to various combinatorial problems 
effectively. This assessment was conducted on the 
TSP problem, and a  comparison was made between 
the traditional GA, which uses only two parents in the 
crossover process, the CSGA algorithm, which uses two 
parents in the crossbreeding between populations and 
the CSGA algorithm, which uses three parents in the 
crossbreeding between populations. According to the 
results, three parent crossover in crossbreeding typically 
yields competitive outcomes in terms of solution quality. 
Finally, the three-parent crossover in crossbreeding 
with MPGA resolved combinatorial optimisation issues 
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