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Resume

To address the challenges of dynamic routing in the last-mile transport
logistics, an adaptive method has been developed for solving a multi-criteria
dynamic vehicle routing problem with static time windows, taking into
account the actual configuration of the urban road network and the non-
stationary traffic dynamics on its sections. At the same time, the method
enables the use of consolidated real-time data on the dynamic characteristics
of traffic flow on sections of the transport network from any sources available
at the time of optimization (e.g., GIS, road sensors, mobile devices, etc.).
The results of simulation studies using the ant colony optimization method
indicate the promising potential of the proposed approach.
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1 Introduction

One of the key approaches to improving the efficiency
of urban last-mile transport logistics is enhancing
delivery performance through the effective organization
of supply processes and route optimization. Given
the dynamic nature of urban road networks, practical
solutions require the implementation of dynamic routing
technologies that utilise the real-time data collection on
urban road network conditions and advanced methods of
discrete route optimization.

While the primary objective of general dynamic
routing is to optimize overall costs and travel time, in
last-mile e-commerce logistics, meeting delivery within
a specified time window is a critical factor. Therefore,
solving the Dynamic Vehicle Routing Problem with Time
Windows (DVRPTW) is particularly important for the
development of efficient, environmentally sustainable,
and customer-oriented logistics in the context of the
digital economy, as it enables a balance between the
delivery optimality and customer requirements. The
effective implementation of DVRPTW should contribute
to the sustainable development of cities, the reduction

of carbon footprint, and the improvement of accessibility
and quality of delivery services in e-commerce.

Indeed, urbanization and the growing volume of
e-commerce deliveries lead to increased traffic congestion
and higher emissions of harmful substances. A systematic
approach to analyzing the challenges of sustainable
urban last-mile transport (ULMT) logistics involves
the use of innovative operational and organizational
solutions, including, in particular, the deployment of
urban micro-consolidation centers (UMCCs), which
reduce delivery distances, optimize routes, lower
transport costs, and enhance accessibility for customers.
In addition to traditional vehicles, this requires the
adoption of alternative modes of transport to enhance
efficiency and sustainability - such as cargo bikes and
scooters, autonomous delivery robots, and unmanned
aerial vehicles - which help to reduce congestion and are
suitable for diverse urban environments. Accordingly,
solving the DVRPTW problem enables not only the
optimization of overall delivery routes, while accounting
for traffic dynamics on sections of urban road network,
but the efficient allocation of courier resources as well,
by minimizing idle times and empty trips, as well as
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synchronizing operations with other services such as
food, medicine, and bulky item deliveries.

Despite the significant progress, the development
of effective dynamic routing systems remains a complex
and challenging task. Although modern motion sensors
and GPS/Galileo systems have significantly improved
the real-time collection of road network data, the
implementation of intelligent optimization methods -
particularly for complex delivery configurations such as
the dynamictraveling salesman problem - remainslargely
confined to simulation studies without full integration of
actual traffic dynamics. Existing approaches address
individual aspects of the last-mile delivery, such as
route planning, scheduling, and fleet allocation. At
present, there are no advanced online routing methods
that simultaneously integrate delivery time windows
and adapt to real-time traffic conditions. This problem
can be addressed through adaptive dynamic routing
systems capable of responding to demand fluctuations,
optimizing transport efficiency, accounting for delivery
time windows, and accommodating newly emerging
orders. The development of such systems is the focus of
this study.

2 Literature review

Urban last-mile freight transport logistics plays
a key role in the functioning of modern urban ecosystems.
With the rapid growth of e-commerce, increasing order
volumes, and rising consumer expectations regarding
delivery speed and timeliness, last-mile logistics
processes are facing unprecedented challenges. These
challenges include road congestion and traffic jams, high
levels of pollution, low delivery efficiency, unpredictable
shifts in consumer expectations and order patterns,
and limited urban space for unloading and parking.
This situation, in particular, results in the last link
of the e-commerce supply chain accounting for 50%
or more of total logistics costs, along with substantial
greenhouse gas emissions and energy consumption
[1]. Thus, addressing the challenges of urban last-
mile transport logistics is crucial not only for ensuring
economic efficiency and customer satisfaction but also
for environmental sustainability.

The application of a systems approach to analyzing
the identified challenges necessitates the development
of appropriate pathways for achieving sustainable
urban last-mile transport logistics, which are linked
to the implementation of innovative organizational,
transport, and operational solutions [2]. In recent years,
the key directions for implementing organizational
innovations have included the deployment of urban
micro-consolidation centers, decentralized logistics
hubs, robotic warehouses, and the use of shared logistics
platforms that enable different companies to share
infrastructure and delivery routes. The integration of
such distribution logistics centers, automated parcel

lockers, and various crowdsourced delivery models
provides a strategic advantage by minimizing travel
distances, thereby increasing operational efficiency [2].
These innovations are essential for ensuring fast and
convenient delivery to recipients while simultaneously
reducing the carbon footprint associated with long travel
distances ([3] Mutavdzija et al., 2024). Simulation models,
such as LOCAMM (Logistics and City Architecture
Multilevel Model), demonstrate their effectiveness
in urban freight management. Studies conducted in
Dresden show that micro-hubs reduce the load on the
road network while maintaining the efficiency of last-
mile delivery operations [4].

The implementation of multi-echelon logistics
systems, intermodal transport solutions, and advanced
monitoring systems is also one of the key approaches to
achieving sustainable urban last-mile transport logistics
[5]. Particular importance is attached to the ongoing
digitalization of transport and logistics processes, which
has become increasingly evident in recent years. Studies
show that digitalization affects logistics infrastructure,
vehicle routing, and inventory management, enhancing
both efficiency and resilience [6-7]. Digital logistics
systems support the implementation of ESG principles
(Environmental, Social, and Governance) by integrating
logistics operations with clean technologies and the
sustainable development goals of cities [6]. The use
of digital twins for modeling urban logistics systems
enables more effective decision-making [8]. The use of
IoT, real-time GPS/Galileo data, predictive analytics,
and artificial intelligence in planning leads to increased
efficiency of transport operations, reduced load in
the urban road network, improved environmental
performance, and lower operational costs [9].

In addressing the last-mile delivery challenges,
a variety of solutions are employed concerning the
selection of different types of vehicles for executing
deliveries. Here, the potential use of innovative transport
modes - such as electric vehicles, cargo bikes, ground and
aerial drones - is significant for reducing energy demand
and mitigating the environmental impact associated
with last-mile delivery [10-13].

However, the implementation of environmentally
friendly transport modes faces a number of challenges. In
particular, for electric vehicles, these challenges include
operational limitations (such as limited driving range),
battery-related issues (such as long charging times), and
both infrastructural and financial difficulties in replacing
existing fleets with more sustainable alternatives due to
the need for charging stations and the high cost of vehicle
acquisition (see, for example, [2]). Accordingly, the limited
speed and load capacity of cargo bikes (CBs), along
with the need for a new road infrastructure, represent
major drawbacks for their use. Drone-based delivery also
requires additional investments, such as the development
of landing stations (see, for example, [2]). As a result, in
most countries - particularly in less developed ones - the
last-mile delivery is carried out within the framework
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of multimodal transport, using conventional vehicles at
least during the initial stages of the supply chain [10].

The implementation of modern innovative
operational solutions in sustainable urban last-mile
transport logistics is linked to the optimization of
dynamic routing processes, delivery time windows,
the location of distribution centers, environmental
impact, crowdsourcing, and business models based
on collaboration between the private enterprises and
public authorities. As the analysis shows, this set of
operational challenges can be effectively addressed
within the framework of the generalized DVRPTW
model [14-15]. Indeed, such a model makes it possible
to account for traffic dynamics on sections of the urban
road network, the stochastic nature of customer orders,
optimize courier resource allocation by minimizing idle
times and empty runs, and synchronize goods delivery
across different transport modes within multimodal
systems. The implementation of such a real-time
dynamic routing, while considering static delivery time
windows, is crucial for reducing environmental impact,
enhancing operational efficiency, and supporting the
integration with urban sustainability initiatives.

However, it should be noted that existing approaches
currently address only individual aspects of urban last-
mile transport logistics, optimizing specific logistics
tasks, such as route planning, scheduling and allocation
of vehicles, handling the stochastic nature of customer
orders, minimizing emissions, and improving vehicle
utilization. This is due to the complexity of developing
adaptive multi-factor mathematical models for the
DVRPTW optimization, particularly for complex delivery
configurations that could, in real time, simultaneously
minimize delivery costs and maximize customer
satisfaction. It is necessary to account for a large number
of parameters, including traffic dynamics, delivery
time, shipment volume, fleet size and composition, as
well as the uncertainty and variability of customer
requests during vehicle movement. Accordingly, [16]
presents a DVRPTW variant that incorporates dynamic
customer requests and variable time windows. In this
case, a multiple ant colony algorithm combined with
powerful local search procedures is proposed to solve
the DVRPTW. In [17], a literature review is presented
on shortest path optimization for courier services using
heuristic and metaheuristic algorithms. In [18], the
vehicle routing problem, involving multiple vehicles,
time windows, and heterogeneous fleets, was addressed
using ant colony optimization. To integrate the dynamic
routing with urban micro-consolidation centers, where
customer requests are directed to alternative third-
party transshipment points in accordance with existing
time window allocations, Adaptive Large Neighborhood
Search algorithms are applied [19].

Recent research on DVRPTW solution methodologies
indicates a trend towards the integration of heuristic and
metaheuristic optimization algorithms with Al-based
machine learning methods [15]. For example, hybrid

models, combining deep reinforcement learning and
simulated annealing-based optimization heuristics, are
applied to vehicle routing problems that take into
account time windows, as well as both known and
stochastic customer behavior [20]. This enables the use
of machine learning potential to search for adaptive
routing solutions. Such models improve real-time route
optimization by analyzing historical traffic patterns
and fluctuations in delivery demand [21], enabling
highly efficient management of the delivery process
[22]. In [23], the application of metaheuristic and
traditional algorithms to intelligent logistics planning
is examined. It is shown that the highest performance
and accuracy are achieved using ant colony optimization
(ACO) algorithms. In [24], an analysis is provided on
the prospects of integrating the neural network-based
predictive analytics, route optimization algorithms,
real-time tracking systems, and sustainable practices
to address last-mile delivery challenges. In [25], to
enhance the effectiveness of forecasting based on deep
learning neural networks, the use of social media data
is proposed. The proposed traffic forecasting framework,
based on historical data, allows for the integration of
additional analytical methods to further improve vehicle
routing. These include modelling tools such as agent-
based simulation, discrete-event simulation, and system
dynamics modelling. The approaches presented in [15,
19, 21-22, 25] have the potential to reduce the delivery
costs through fuel savings and increased efficiency;
however, they do not resolve the challenge of real-time
routing.

Thus, the conducted analysis reveals that the
literature lacks comprehensive solutions to DVRPTW
problems for urban last-mile transport logistics that
simultaneously account, in real time, for the actual
configuration and non-stationary traffic dynamics of the
urban road network. Recent studies on dynamic vehicle
routing within the traveling salesman problem (TSP)
framework, conducted in [26-28] without consideration
of time windows, indicate the promising potential of
the approaches developed in these works for addressing
DVRPTW problems.

Building upon [26-28], the results of developing
a method for solving multi-criteria DVRPTW that
accounts, in real time, for non-stationary traffic dynamics
on the sections of the urban road network, are presented
in this paper. The optimization criteria in this case are
the minimization of total transport costs (in terms of
route time) and the maximization of overall customer
satisfaction. The solution strategy is based on the use
of a modified Al method for the ant colony optimization
(ACO, ), which contains the concept of Pareto optimality
for multi-objective optimization. Based on the developed
method, an adaptable information system for dynamic
vehicle routing with time windows is proposed for use in
urban last-mile transport logistics. Within the adaptable
information system DVRPTW framework, it is possible
to take into account the actual configuration of the
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urban road network and utilise consolidated data on the
dynamic characteristics of traffic flows on sections of
this network from any sources available at the time of
operation (e.g., GIS, road sensors, mobile devices) during
the optimization process.

3 Research methodology

In this article are presented the results of
developing a real-time DVRPTW solution method for
urban last-mile transport logistics, based on solving
an asymmetric Dynamic Traveling Salesman Problem
with Time Windows, taking into account the actual
configuration of the urban road network and traffic
flow dynamics on its sections. Following [26], the
urban road network is represented as a bidirectionally
oriented weighted graph, where the nodes correspond to
delivery points with time windows and depots. The arcs
contain a sequence of urban road network sections, the
traversal of which defines the optimal route between the
corresponding pair of delivery points at specific times of
the day. The solution of the DVRPTW in urban last-mile
transport logistics is based on the following assumptions.

Delivery points may include customers, hubs, and
parcel lockers. Parcel lockers are located in easily
accessible areas for both couriers and customers, such as
large residential neighborhoods or near public transport
hubs.

The dynamic nature of the problem is due to the
fact that routes may change in real time as a result of
new orders or unforeseen events (e.g., changes in traffic
flow dynamics on the urban road network sections, road
congestion, weather conditions, etc.).

The delivery time windows (slots) generally differ
for each delivery point, depending on factors such as
order priority; however, the overall delivery timeframe
is defined within the limits of a single day (e.g., night to
morning, morning to noon, noon to evening, etc.).

For hubs and parcel lockers, the volume of goods
and the number of delivery points are sufficiently large,
and the delivery points are spaced far apart, making
the use of pedestrian couriers and couriers on “green”
transport modes inefficient in Dynamic Traveling
Salesman Problem with Time Windows solutions. The
use of bicycles, drones, or electric scooters is applied
for short distances - from hubs to parcel lockers and
from parcel lockers to customers - which aligns with the
concept of sustainable development.

In urban settings, dynamic routing for deliveries
from hubs to parcel lockers and from parcel lockers to
customers is generally not relevant, as the movement
is largely unaffected by traffic dynamics (couriers travel
on foot, by bicycle, or scooter over relatively short
distances).

The distribution of time windows at the delivery
points allows all deliveries in the dynamic problem
under consideration to be performed by a single vehicle.

To solve a Dynamic Traveling Salesman Problem
with Time Windows, the use of a modified ant colony
optimization algorithm, ACO,_ ,, is proposed. The choice
of the ant colony optimization algorithm, as an Al
optimization method for solving the last-mile urban
transport logistics problems, is motivated by several
factors. First, the ACO and its modifications are more
versatile compared to most other heuristic optimization
methods (see, for example, [28]), allowing for the solution
of routing problems in urban road networks of the required
scale. In addition, the ACO and its modifications often
demonstrate higher performance [28]. Moreover, due to
their synergetic nature, the optimization mechanisms
of ACO and its modifications resemble the dynamics of
traffic flow, particularly in high-density areas [28]. It
should be noted that such synergetic effects are observed
in nonlinear, nonequilibrium, dissipative systems of
various physical natures (see, for example, [29-30]).

The modification of the classical ACO algorithm
[31], to account for the time windows, which is used
in this paper, is described in [32]. Here, the original
transition rule of the classical ACO algorithm, which
governs the movement of an ant from node i to node
J, takes the following form in the modified algorithm
ACO_
argmax (7:) (7)Y (g2 (k) if ¢ < qo
zE N; , (D
S, otherwise

j:

where: 7. 1is represents the current amount of
pheromone on the path from node i to node z; 7 is
denotes visibility, which in the classical algorithm is
defined as the inverse of the distance (7. = 1/d:);
giz 1s a heuristic that ensures prioritization of
transitions to nodes whose upper time window bounds
are closer to the ant’s expected arrival time at the
node z; h_ is a heuristic that aimed at minimizing
the ant’s waiting time in cases where it arrives at
a node before the lower bound of the time window; g,
(0 £ g,< 1) is a user-defined parameter that determines
the probability of selecting the most attractive node
for the next move; ¢ is a random number drawn from
a uniform distribution over the interval [0, 1]; N, is
the set of nodes not yet visited by the ant; «, 3,6,y
are user-defined parameters that control the influence
of Tiz, iz, gz and h,, respectively; S is a probabilistic
transition rule that defines the probability P, of an ant
moving from node i to node j.

In presented case, in the modified ant colony
optimization algorithm ACO_,, unlike the classical
ACO, two additional local heuristics g:: and &, are used
in Equation (1). In addition, according to the delivery
time minimization criterion in DTSPTW, the visibility
N = 1/t, where t, - is the expected travel time from
node i to node z. Then, taking into account the heuristics
gi- and h_, the transition probability PL.J. is determined
as follows:
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() (1) (g5)° (hy)
ZZEN;'(Tiz)a(niz)ﬂ(giz)e(hiz)y,
0. otherwise,

P = lf]ENi(Z)

where the heuristic g;. is calculated according to [32]
as follows:

1 s
0 = 1T T exp(3(Ga =Gy 2= 0 3)

0, otherwise.

Here G, = b, — t_, where b, is the upper bound of
the time window at node 2, and ¢, is the estimated
arrival time of the ant traveling from node i to node z;
J is user-defined parameter, which controls the slope
of the function; Gavg is average of all Gij where Gij >0,
J € N,[32]. It is worth noting that although Equation (3)
formally allows g.. =0, in the algorithm implementation,
it is advisable to replace zero with a sufficiently small
non-zero value to avoid zero transition probabilities in
Equation (2).

According to [32], the heuristic /, in Equations (1)
and (2) is calculated as follows:

1 A
h =11+ exp(A(Ha — Hog)) M= 0 )

0, otherwise.

Here H,_ = a, - t_, where a, is the lower bound of
the time window at node z, and ¢, is the arrival time
of the ant currently at node i, traveling to node z; A is
user-defined parameter, which controls the slope of the
function; H_ is average of all Hij ,where Hij >0,j € N,
[32].

In the classical ant colony algorithm [31] ants
are uniformly distributed across all the nodes at the
start of each iteration to enhance exploration. In
contrast to [31], the present approach requires placing
all ants at the same node to correctly account for the
time window constraints, as time window feasibility
necessitates a consistent temporal reference across all
the ants within a single iteration. Thus, in the proposed
modification of the Ant Colony Optimization model,
the artificial ants start each iteration from a single
location - either from the current position of the vehicle
in the dynamic version of the Travelling Salesman
Problem with Time Windows or from the starting depot
in its static version. Although this approach somewhat
reduces the algorithm‘s exploration capabilities, this
limitation can be mitigated by appropriately decreasing
the value of the parameter ¢, in Equation (1).

Thus, the main advantages of using the proposed
ACO_ , algorithm for solving the Dynamic Travelling
Salesman Problem with Time Windows include its
relatively high performance, configurational flexibility
to meet user-specific needs, and the minimization of
vehicle idle time at delivery points. At the same time,
the optimization criterion can be defined by redefining

1, while the degree of influence of the time windows
is controlled through the user-defined parameters. For
example, in the cases where the strict adherence to time
windows is required, higher values can be assigned to
the parameters 0, and 7y . Conversely, if the priority is
to minimize delivery time ¢  , it is recommended to use
N = 1/d;; instead of 7 = 1/t and to assign a higher
value to the parameter . Thus, the proposed method
enables the implementation of the Pareto optimality
concept for multi-objective optimization.

Based on the developed method, the adaptable
information system DVRPTW system has been proposed
for use in urban last-mile transport logistics. The model
of this system is schematically illustrated in Figure 1.
Adaptable information system DVRPTW performs two
main functions: it monitors the state of the urban road
network based on section characteristics obtained from
various data collection sources, and it supports the
dynamic online optimization of routes using current or
historical urban road network condition data.

To address the urban road network state monitoring
task, it is necessary to collect and process data from
all the available sources of information regarding the
dynamic and sections static characteristics of this
network. In this context, a key role is played by the
monitoring of dynamic characteristics of urban road
network sections, such as traffic flow parameters
(average speed, density and intensity), environmental
indicators (emissions of carbon dioxide (CO,), particulate
matter (PM), nitrogen oxides (NO ), sulfur oxides (SO),
volatile organic compounds (VOCs), etc.), noise pollution
and others. Particular attention should be given to
monitoring of environmental indicators, which play
a significant role in the implementation of modern
urban transport logistics methods aimed at realizing the
concept of sustainable development.

In the absence of current values for certain dynamic
characteristics of an urban road network section, they
can be estimated based on the available current values
of other characteristics and historical data. For example,
in [27], the average traffic flow speed is calculated
through an approximation using the current data on
traffic intensity at the section under study and historical
data on traffic density from a representative section
within the homogeneous cluster of urban road network
to which the section belongs.

To collect and store data on the characteristics
of sections for the purpose of generating consolidated
information on urban road network conditions, the
proposed adaptable information system DVRPTW
includes a dedicated subsystem called the “Urban Road
Network State Monitoring Subsystem” (see Figure 1).
This subsystem contains modules for processing and
storing information on the condition of sections from
various sources, such as GIS platforms, traffic sensors,
air pollution detectors, VANET, MANET systems, and
others. The system administrator configures access
to available data sources and sets up update triggers
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Figure 1 Model of the adaptable information system for solving the DVRPTW with consideration
of real-time urban road network conditions

according to user requirements. The subsystem retrieves
data on urban road network section conditions based on
these predefined triggers and stores it for subsequent
use in dynamic routing processes.

In the proposed adaptable information system
DVRPTW, the task of dynamic user routing is handled by
the “Route Optimization Subsystem” (see Figure 1). This
subsystem incorporates various optimization methods
and algorithms to solve different types of dynamic
routing problems. It is important to emphasize that
the optimization methods included in the system must
be sufficiently versatile to address problems involving
complex, multi-factor optimization criteria, while also
being flexible and responsive to dynamic changes in
the urban road network state. In this study, the ACO_ ,
algorithm is employed, with its application justified in
the preceding sections.

At the start of the journey from the depot, the
user submits a request to the system, including all the
necessary input data according to the specific VRP type,
such as the route optimization criterion, the locations of
delivery points, their respective time windows, and/or
other constraints. The Route Optimization Subsystem
retrieves current data on the state of the urban road
network in the required representation based on the
problem type, determines the optimal solution using
the most appropriate method for the given task, and
sends the optimized solution back to the user. Dynamic
re-optimization of the route occurs during the execution

of the optimized path, depending on changes in current
traffic characteristics on urban road network sections,
the appearance of new orders, and other factors.

The operation of each subsystem is closely linked to
the specifics of accessing information sources regarding
the urban road network characteristics. To store
historical data and enable its subsequent analysis,
the system includes a dedicated data warehouse. For
deploying such a system, the use of modern cloud
technologies is recommended.

In authors’ prior work [33] the architectural
implementation of adptable intelligent transport system
for dynamic routing is presented. The system's technical
implementation leverages Amazon Web Services
(AWS), which provides high level of cybersecurity,
reliability, and system performance. The urban road
network monitoring subsystem is built on a serverless
architecture, enabling the robust scalability and efficient
resource utilization when processing large volumes of
real-time data from diverse sources. A dedicated data
synchronization process leverages the AWS services such
as Lambda, SQS, and DynamoDB to collect and store
current urban road network characteristics. This real-
time data is then consumed by the route optimization
subsystem to support dynamic re-optimization. The
re-optimization process is automatically triggered during
route execution according to user-defined configurations,
ensuring that the system remains both responsive
and reliable.
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Table 1 Warehouse and shops (delivery points) with time windows

Point ID Address Time Window

0 82 Kyrylivska Street

1 24 Beresteiskyi Avenue 9:30 - 13:00
2 40 Mytropolyta Vasylia Lypkivskoho Street 9:30 - 11:30
3 50 Antonovycha Street 9:00 - 12:30
4 2 Vasylkivska Street 9:30 - 11:30
5 24 Lesi Ukrainky Boulevard 8:30 - 11:00
6 3A Mykhaila Hryshka Street 8:30 - 10:30
7 22/20 Petra Hryhorenka Avenue 8:00 - 11:00
8 2A Kharkivske Highway 8:00 - 10:30
9 12V Voskresenska Street 6:30 - 9:30
10 7/11 Khreshchatyk Street 6:00 - 9:00

4 Result and discussion

To evaluate the proposed DVRPTW method within
the context of urban last-mile transport logistics,
a series of simulation studies were conducted. The
selected case involved the distribution of goods to retail
outlets in Kyiv. During the simulation, a Dynamic
Traveling Salesman Problem with Time Windows was
solved in which a delivery vehicle transported customer
orders from a warehouse (depot) to 10 designated
delivery points and then returned to the depot. Those
delivery points corresponded to branches of the well-
known e-commerce retailer ,Rozetka,” which possesses
a developed logistics infrastructure including stores,
pickup points, and parcel lockers [34].

The addresses of the stores (delivery points) and the
corresponding time windows for receiving the goods are
summarized in Table 1. The column “Point ID” contains
the identifiers of the points (the depot is assigned ID
0, and delivery points are numbered 1-10); the column
“Address” specifies the address of each point; and the
column “Time Window” indicates the time interval
during the day which the respective delivery point can
accept goods from the depot.

A graphical representation of the delivery point
locations is shown in Figure 2.

The simulation studies were conducted under the
following conditions:

* A truck loaded with customer orders departs at
7:30 AM from the warehouse (depot) - Point 0 (82
Kyrylivska Street).

®  Due to the specific organization of store operations
(e.g., workload balancing, urgent orders, etc.), each
store has its own delivery schedule, meaning a static
time window during which the delivery point is able
to accept goods (see Table 1).

¢ The optimization criterion is the minimization
of the total time spent on delivering goods to the
specified stores in strict compliance with the defined
time windows, followed by a return to the warehouse
(depot). The optimization was carried out using

the proposed method described in Section 3, with

the following parameter values: ¢, = 0.9, o = 1,

B =5 6 =205 v =3 6 A = 0.05,

p = 0.1, m = 10. This parameter configuration,

except g, was adopted from [32]. The value of

q, was reduced to enhance ACO,_ , exploration,

which refers to the algorithm’s ability to search

a broader range of potential solutions rather

than prematurely converging. Such exploration

is particularly important for the re-optimization
process in dynamic scenarios.

*  Unloading of goods at each store takes 15 minutes.

* Route re-optimization is performed after the goods
are unloaded at a delivery point, and before the
vehicle departs for the next destination.

¢ In the course of the simulation studies based on the
proposed method, dynamic routing is carried out
using the real-world data on the state of the urban
road network, including GIS-based traffic data for
sections (obtained from the Azure Maps service

[35]) and data from road sensors located on selected

sections.

e After completing deliveries to all the stores, the
truck must return to the warehouse (depot).

The results of the simulation study on dynamic
routing of goods deliveries to the specified “Rozetka”
stores, taking into account time windows, are presented
in Table 2. The symbol * marks the delivery point
at which re-optimization is performed. The column
“Current Time” indicates the time of day when the route
was re-optimized. The column “Optimal Route” lists the
optimal sequence of delivery points obtained as a result
of re-optimization at the respective delivery point. The
column “Current” provides the expected time (in seconds)
for the optimal route obtained through re-optimization
at that delivery point. The column “Previous” shows the
expected time of the optimal route obtained from the
previous re-optimization but recalculated for the current
dynamic state of the network. The column “Initial” gives
the expected time for the optimal route obtained from
the initial optimization (at the time of departure from
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Figure 2 Locations of the warehouse (0) and delivery points (1, ..., 10) on the map of Kyiv
Table 2 Results of dynamic freight delivery routing with time windows in the urban road network of Kyiv
) ) Optimal route expected time, s
Current time Optimal route

Current Previous Initial
07:30:00 0%10-9-8-7-6-5-4-3-2-1-0 15792 - -
07:57:15 0-10*%9-8-7-6-5-4-3-2-1-0 15755 15755 15755
08:24:26 0-10-9%8-7-6-5-4-(2-3)-1-0 18247 17974 17974
08:48:53 0-10-9-8%(5-7-6)-4-2-3-1-0 18420 18625 18248
09:16:05 0-10-9-8-5%(6-7)-4-(3-2)-1-0 17342 18469 17517
09:42:30 0-10-9-8-5-6%7-4-3-2-1-0 16645 16645 16766
10:01:12 0-10-9-8-5-6-7%4-3-2-1-0 16335 16335 16438
10:29:03 0-10-9-8-5-6-7-4%3-2-1-0 16237 16237 16359
10:53:36 0-10-9-8-5-6-7-4-3%2-1-0 16168 16168 16283
11:15:42 0-10-9-8-5-6-7-4-3-2%1-0 16197 16197 16331
11:36:35 0-10-9-8-5-6-7-4-3-2-1%0 16184 16184 16324
11:59:44 0-10-9-8-5-6-7-4-3-2-1-0* - 16184 16324

* the current delivery point where re-optimization is being performed

the depot), but recalculated for the current dynamic
state of the network, as well. In parentheses is shown
the section of the route that is modified as a result of
the re-optimization.

across the urban road network sections and the failure
of some delivery time windows to align with the arrival
times generated by the previously optimized route

configurations, based on earlier (previous) states of
As evident from Table 2, the simulation studies, traffic dynamics.

conducted using the proposed DVRPTW method in
urban last-mile transport logistics, revealed several
effects associated with the restructuring of the optimal
route. For example, at specific times of day - 08:24:26,
08:48:53, and 09:16:05 - the optimal route is rebuilt (see
Table 2) due to changes in traffic flow load distribution

For instance, at 08:24:26, the optimal route was
adjusted: the section 4-3-2-1 was restructured to 4-2-3-
1. In this case, the travel time of the newly optimized
route (18247 s =~ 304 min) became longer than that of
the previously determined optimal route (17974 s =
300 min) due to an increase in traffic density - and
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consequently, a decrease in average speed - on certain
sections of the urban road network. At the same
time, an interesting observation is made (see Table 2).
Route optimization at Point 9 at 08:24:26 reveals that
the previously determined optimal route at Point 10
at 07:57:15 (0-10*-9-8-7-6-5-4-3-2-1-0) fails to ensure
compliance with the delivery time windows at some
of the subsequent points according to the specified
optimal route configuration. Specifically, according to
this route, arrival and completion of unloading at Point
2 is scheduled for 11:36:52 (see Table 2), whereas the
time window for Point 2 is 09:30 - 11:30 (see Table 1).
In contrast, for the updated optimal route generated
at Point 9 at 08:24:26 - taking into account the current
urban road network states - arrival and completion
of unloading at Point 2 occurs at 11:12:49, which
ensures compliance with the established delivery time
window.

Next, at Point 8 at 08:48:53, the optimal route is
further rebuilt - based on updated trafic data - to the
configuration (0-10-9-8%-5-7-6-4-2-3-1-0), resulting in
a reduction of the expected total delivery time from
18,625 s (= 310 min) to 18,420 s (= 307 min) (see Table
2). Accordingly, at Point 5 at 09:16:05, re-optimization
also results in a rebuilding of the optimal route to
the configuration (0-10-9-8-5%-6-7-4-(3-2)-1-0), which
reduces the expected total route time by 6.1% (1,127
s =~ 19 min) - from 18,469 s (= 308 min) to 17,342 s (=
289 min) (see Table 2). Interestingly, the rebuilding
of the optimal route at Point 5 resulted in a reverse
inversion of the sequence (3-2) to (2-3), which had
previously occurred during the re-optimization at Point
9. Such a change in route configuration, resulting
from decreased traffic intensity on urban road network
sections, not only shortened the total route duration,
but restored compliance with the time windows that
had been violated at Point 9 at 08:24:26, as well. Now,
the completion of delivery and unloading at Point 2 is
scheduled within the designated time window of 09:30 -
11:30, specifically at 11:26:13.

Thus, the results of the simulation studies
demonstrate the sufficient effectiveness and adaptability
of the developed dynamic routing method with static
time windows for urban last-mile transport logistics.

5 Conclusion

This study addressed the dynamic routing problems
in urban last-mile transport logistics by developing
a multi-criteria DVRPTW method that accounts non-
stationary traffic dynamics on urban road network
sections in real time.

The optimization criteria in this case are the
minimization of total transport costs (in terms of
route time) and the maximization of overall customer
satisfaction. The solution strategy is based on a modified
Al optimization method using the ant colony system,

ACO_ ,, which incorporates the concept of Pareto
optimality for multi-objective optimization. Based on
the developed method, an adaptable information system
for dynamic vehicle routing with static delivery time
windows has been proposed. The presented system is
a universal solution for addressing the dynamic routing
problems in transport logistics, as it incorporates
capabilities for accounting for the actual configuration
of the urban road network and enables the real-time use
of consolidated data on dynamic traffic characteristics
across network sections from any available sources at
the time of operation (e.g., GIS, road sensors, mobile
devices, etc.).

To validate the proposed method, simulation studies
were conducted to determine the optimal route within
the framework of an asymmetric Dynamic Traveling
Salesman Problem with Time Windows, using travel
time as the optimization criterion. These studies
conducted in the urban road network of Kyiv, with
deliveries to e-commerce retailer Rozetka pickup
points, demonstrated the method’s effectiveness and
adaptability. The results showed that the optimal route
is dynamically restructured in response to changing
traffic load, ensuring that the deliveries remain within
designated time windows. For example, some deliveries
that would have violated their time windows under
previously determined routes were successfully rebuilt
through real-time optimization, and total travel time
reductions of up to 6% were observed due to improved
route sequence. These findings highlight the method’s
capability to adjust to traffic fluctuations, restore
compliance with delivery schedules, and reduce overall
route durations, confirming its practical value for urban
last-mile logistics.

Despite these positive results, some limitations
should be noted. The method was tested in a medium-
sized urban segment with a single-vehicle case, and
scaling to very large metropolitan networks may
significantly increase computational requirements. While
the architecture of the proposed system theoretically
does not impose strict limitations on computing capacity,
in practice its performance and stability are strongly
influenced by the hosting environment, including
the cloud infrastructure configuration and resource
allocation. In addition, the approach assumes reliable
and continuous access to traffic and environmental data;
in the real-world conditions, incomplete or inconsistent
data streams may reduce solution accuracy. Finally,
the applicability of the method in other contexts - such
as multimodal logistics systems, suburban areas, or
cross-border transport corridors - remains to be further
investigated. These limitations outline promising
directions for future research.

Overall, the study demonstrates that developed
method and information system DVRPTW propose
a practical and adaptable approach to dynamic routing
in urban logistics, effectively balancing operational
efficiency and delivery reliability.
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