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Resume
To address the challenges of dynamic routing in the last-mile transport 
logistics, an adaptive method has been developed for solving a multi-criteria 
dynamic vehicle routing problem with static time windows, taking into 
account the actual configuration of the urban road network and the non-
stationary traffic dynamics on its sections. At the same time, the method 
enables the use of consolidated real-time data on the dynamic characteristics 
of traffic flow on sections of the transport network from any sources available 
at the time of optimization (e.g., GIS, road sensors, mobile devices, etc.). 
The results of simulation studies using the ant colony optimization method 
indicate the promising potential of the proposed approach.
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of carbon footprint, and the improvement of accessibility 
and quality of delivery services in e-commerce.

Indeed, urbanization and the growing volume of 
e-commerce deliveries lead to increased traffic congestion 
and higher emissions of harmful substances. A systematic 
approach to analyzing the challenges of sustainable 
urban last-mile transport (ULMT) logistics involves 
the use of innovative operational and organizational 
solutions, including, in particular, the deployment of 
urban micro-consolidation centers (UMCCs), which 
reduce delivery distances, optimize routes, lower 
transport costs, and enhance accessibility for customers. 
In addition to traditional vehicles, this requires the 
adoption of alternative modes of transport to enhance 
efficiency and sustainability - such as cargo bikes and 
scooters, autonomous delivery robots, and unmanned 
aerial vehicles - which help to reduce congestion and are 
suitable for diverse urban environments. Accordingly, 
solving the DVRPTW problem enables not only the 
optimization of overall delivery routes, while accounting 
for traffic dynamics on sections of urban road network, 
but the efficient allocation of courier resources as well, 
by minimizing idle times and empty trips, as well as 

1	 Introduction

One of the key approaches to improving the efficiency 
of urban last-mile transport logistics is enhancing 
delivery performance through the effective organization 
of supply processes and route optimization. Given 
the dynamic nature of urban road networks, practical 
solutions require the implementation of dynamic routing 
technologies that utilise the real-time data collection on 
urban road network conditions and advanced methods of 
discrete route optimization.

While the primary objective of general dynamic 
routing is to optimize overall costs and travel time, in 
last-mile e-commerce logistics, meeting delivery within 
a  specified time window is a  critical factor. Therefore, 
solving the Dynamic Vehicle Routing Problem with Time 
Windows (DVRPTW) is particularly important for the 
development of efficient, environmentally sustainable, 
and customer-oriented logistics in the context of the 
digital economy, as it enables a  balance between the 
delivery optimality and customer requirements. The 
effective implementation of DVRPTW should contribute 
to the sustainable development of cities, the reduction 
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lockers, and various crowdsourced delivery models 
provides a  strategic advantage by minimizing travel 
distances, thereby increasing operational efficiency [2]. 
These innovations are essential for ensuring fast and 
convenient delivery to recipients while simultaneously 
reducing the carbon footprint associated with long travel 
distances ([3] Mutavdzija et al., 2024). Simulation models, 
such as LOCAMM (Logistics and City Architecture 
Multilevel Model), demonstrate their effectiveness 
in urban freight management. Studies conducted in 
Dresden show that micro-hubs reduce the load on the 
road network while maintaining the efficiency of last-
mile delivery operations [4].

The implementation of multi-echelon logistics 
systems, intermodal transport solutions, and advanced 
monitoring systems is also one of the key approaches to 
achieving sustainable urban last-mile transport logistics 
[5]. Particular importance is attached to the ongoing 
digitalization of transport and logistics processes, which 
has become increasingly evident in recent years. Studies 
show that digitalization affects logistics infrastructure, 
vehicle routing, and inventory management, enhancing 
both efficiency and resilience [6-7]. Digital logistics 
systems support the implementation of ESG principles 
(Environmental, Social, and Governance) by integrating 
logistics operations with clean technologies and the 
sustainable development goals of cities [6]. The use 
of digital twins for modeling urban logistics systems 
enables more effective decision-making [8]. The use of 
IoT, real-time GPS/Galileo data, predictive analytics, 
and artificial intelligence in planning leads to increased 
efficiency of transport operations, reduced load in 
the urban road network, improved environmental 
performance, and lower operational costs [9].

In addressing the last-mile delivery challenges, 
a  variety of solutions are employed concerning the 
selection of different types of vehicles for executing 
deliveries. Here, the potential use of innovative transport 
modes - such as electric vehicles, cargo bikes, ground and 
aerial drones - is significant for reducing energy demand 
and mitigating the environmental impact associated 
with last-mile delivery [10-13]. 

However, the implementation of environmentally 
friendly transport modes faces a number of challenges. In 
particular, for electric vehicles, these challenges include 
operational limitations (such as limited driving range), 
battery-related issues (such as long charging times), and 
both infrastructural and financial difficulties in replacing 
existing fleets with more sustainable alternatives due to 
the need for charging stations and the high cost of vehicle 
acquisition (see, for example, [2]). Accordingly, the limited 
speed and load capacity of cargo bikes (CBs), along 
with the need for a  new road infrastructure, represent 
major drawbacks for their use. Drone-based delivery also 
requires additional investments, such as the development 
of landing stations (see, for example, [2]). As a result, in 
most countries - particularly in less developed ones - the 
last-mile delivery is carried out within the framework 

synchronizing operations with other services such as 
food, medicine, and bulky item deliveries. 

Despite the significant progress, the development 
of effective dynamic routing systems remains a complex 
and challenging task. Although modern motion sensors 
and GPS/Galileo systems have significantly improved 
the real-time collection of road network data, the 
implementation of intelligent optimization methods - 
particularly for complex delivery configurations such as 
the dynamic traveling salesman problem - remains largely 
confined to simulation studies without full integration of 
actual traffic dynamics. Existing approaches address 
individual aspects of the last-mile delivery, such as 
route planning, scheduling, and fleet allocation. At 
present, there are no advanced online routing methods 
that simultaneously integrate delivery time windows 
and adapt to real-time traffic conditions. This problem 
can be addressed through adaptive dynamic routing 
systems capable of responding to demand fluctuations, 
optimizing transport efficiency, accounting for delivery 
time windows, and accommodating newly emerging 
orders. The development of such systems is the focus of 
this study.

2	 Literature review

Urban last-mile freight transport logistics plays 
a key role in the functioning of modern urban ecosystems. 
With the rapid growth of e-commerce, increasing order 
volumes, and rising consumer expectations regarding 
delivery speed and timeliness, last-mile logistics 
processes are facing unprecedented challenges. These 
challenges include road congestion and traffic jams, high 
levels of pollution, low delivery efficiency, unpredictable 
shifts in consumer expectations and order patterns, 
and limited urban space for unloading and parking. 
This situation, in particular, results in the last link 
of the e-commerce supply chain accounting for 50% 
or more of total logistics costs, along with substantial 
greenhouse gas emissions and energy consumption 
[1]. Thus, addressing the challenges of urban last-
mile transport logistics is crucial not only for ensuring 
economic efficiency and customer satisfaction but also 
for environmental sustainability.

The application of a systems approach to analyzing 
the identified challenges necessitates the development 
of appropriate pathways for achieving sustainable 
urban last-mile transport logistics, which are linked 
to the implementation of innovative organizational, 
transport, and operational solutions [2]. In recent years, 
the key directions for implementing organizational 
innovations have included the deployment of urban 
micro-consolidation centers, decentralized logistics 
hubs, robotic warehouses, and the use of shared logistics 
platforms that enable different companies to share 
infrastructure and delivery routes. The integration of 
such distribution logistics centers, automated parcel 
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models, combining deep reinforcement learning and 
simulated annealing-based optimization heuristics, are 
applied to vehicle routing problems that take into 
account time windows, as well as both known and 
stochastic customer behavior [20]. This enables the use 
of machine learning potential to search for adaptive 
routing solutions. Such models improve real-time route 
optimization by analyzing historical traffic patterns 
and fluctuations in delivery demand [21], enabling 
highly efficient management of the delivery process 
[22]. In [23], the application of metaheuristic and 
traditional algorithms to intelligent logistics planning 
is examined. It is shown that the highest performance 
and accuracy are achieved using ant colony optimization 
(ACO) algorithms. In [24], an analysis is provided on 
the prospects of integrating the neural network-based 
predictive analytics, route optimization algorithms, 
real-time tracking systems, and sustainable practices 
to address last-mile delivery challenges. In [25], to 
enhance the effectiveness of forecasting based on deep 
learning neural networks, the use of social media data 
is proposed. The proposed traffic forecasting framework, 
based on historical data, allows for the integration of 
additional analytical methods to further improve vehicle 
routing. These include modelling tools such as agent-
based simulation, discrete-event simulation, and system 
dynamics modelling. The approaches presented in [15, 
19, 21-22, 25] have the potential to reduce the delivery 
costs through fuel savings and increased efficiency; 
however, they do not resolve the challenge of real-time 
routing.

Thus, the conducted analysis reveals that the 
literature lacks comprehensive solutions to DVRPTW 
problems for urban last-mile transport logistics that 
simultaneously account, in real time, for the actual 
configuration and non-stationary traffic dynamics of the 
urban road network. Recent studies on dynamic vehicle 
routing within the traveling salesman problem (TSP) 
framework, conducted in [26-28] without consideration 
of time windows, indicate the promising potential of 
the approaches developed in these works for addressing 
DVRPTW problems.

Building upon [26-28], the results of developing 
a  method for solving multi-criteria DVRPTW that 
accounts, in real time, for non-stationary traffic dynamics 
on the sections of the urban road network, are presented 
in this paper. The optimization criteria in this case are 
the minimization of total transport costs (in terms of 
route time) and the maximization of overall customer 
satisfaction. The solution strategy is based on the use 
of a modified AI method for the ant colony optimization 
(ACOmod), which contains the concept of Pareto optimality 
for multi-objective optimization. Based on the developed 
method, an adaptable information system for dynamic 
vehicle routing with time windows is proposed for use in 
urban last-mile transport logistics. Within the adaptable 
information system DVRPTW framework, it is possible 
to take into account the actual configuration of the 

of multimodal transport, using conventional vehicles at 
least during the initial stages of the supply chain [10].

The implementation of modern innovative 
operational solutions in sustainable urban last-mile 
transport logistics is linked to the optimization of 
dynamic routing processes, delivery time windows, 
the location of distribution centers, environmental 
impact, crowdsourcing, and business models based 
on collaboration between the private enterprises and 
public authorities. As the analysis shows, this set of 
operational challenges can be effectively addressed 
within the framework of the generalized DVRPTW 
model [14-15]. Indeed, such a  model makes it possible 
to account for traffic dynamics on sections of the urban 
road network, the stochastic nature of customer orders, 
optimize courier resource allocation by minimizing idle 
times and empty runs, and synchronize goods delivery 
across different transport modes within multimodal 
systems. The implementation of such a  real-time 
dynamic routing, while considering static delivery time 
windows, is crucial for reducing environmental impact, 
enhancing operational efficiency, and supporting the 
integration with urban sustainability initiatives.

However, it should be noted that existing approaches 
currently address only individual aspects of urban last-
mile transport logistics, optimizing specific logistics 
tasks, such as route planning, scheduling and allocation 
of vehicles, handling the stochastic nature of customer 
orders, minimizing emissions, and improving vehicle 
utilization. This is due to the complexity of developing 
adaptive multi-factor mathematical models for the 
DVRPTW optimization, particularly for complex delivery 
configurations that could, in real time, simultaneously 
minimize delivery costs and maximize customer 
satisfaction. It is necessary to account for a large number 
of parameters, including traffic dynamics, delivery 
time, shipment volume, fleet size and composition, as 
well as the uncertainty and variability of customer 
requests during vehicle movement. Accordingly, [16] 
presents a DVRPTW variant that incorporates dynamic 
customer requests and variable time windows. In this 
case, a  multiple ant colony algorithm combined with 
powerful local search procedures is proposed to solve 
the DVRPTW. In [17], a  literature review is presented 
on shortest path optimization for courier services using 
heuristic and metaheuristic algorithms. In [18], the 
vehicle routing problem, involving multiple vehicles, 
time windows, and heterogeneous fleets, was addressed 
using ant colony optimization. To integrate the dynamic 
routing with urban micro-consolidation centers, where 
customer requests are directed to alternative third-
party transshipment points in accordance with existing 
time window allocations, Adaptive Large Neighborhood 
Search algorithms are applied [19].

Recent research on DVRPTW solution methodologies 
indicates a trend towards the integration of heuristic and 
metaheuristic optimization algorithms with AI-based 
machine learning methods [15]. For example, hybrid 
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To solve a  Dynamic Traveling Salesman Problem 
with Time Windows, the use of a  modified ant colony 
optimization algorithm, ACOmod, is proposed. The choice 
of the ant colony optimization algorithm, as an AI 
optimization method for solving the last-mile urban 
transport logistics problems, is motivated by several 
factors. First, the ACO and its modifications are more 
versatile compared to most other heuristic optimization 
methods (see, for example, [28]), allowing for the solution 
of routing problems in urban road networks of the required 
scale. In addition, the ACO and its modifications often 
demonstrate higher performance [28]. Moreover, due to 
their synergetic nature, the optimization mechanisms 
of ACO and its modifications resemble the dynamics of 
traffic flow, particularly in high-density areas [28]. It 
should be noted that such synergetic effects are observed 
in nonlinear, nonequilibrium, dissipative systems of 
various physical natures (see, for example, [29-30]). 

The modification of the classical ACO algorithm 
[31], to account for the time windows, which is used 
in this paper, is described in [32]. Here, the original 
transition rule of the classical ACO algorithm, which 
governs the movement of an ant from node i  to node 
j, takes the following form in the modified algorithm 
ACOmod:

,
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where: izx  is represents the current amount of 
pheromone on the path from node i  to node z; izh  is 
denotes visibility, which in the classical algorithm is 
defined as the inverse of the distance /d1iz izh =^ h ; 
giz  is a  heuristic that ensures prioritization of 
transitions to nodes whose upper time window bounds 
are closer to the ant’s expected arrival time at the 
node z; hiz is a  heuristic that aimed at minimizing 
the ant’s waiting time in cases where it arrives at 
a  node before the lower bound of the time window; q0  
(0 ≤ q0 ≤ 1) is a user-defined parameter that determines 
the probability of selecting the most attractive node 
for the next move; q is a  random number drawn from 
a  uniform distribution over the interval [0, 1]; Ni is 
the set of nodes not yet visited by the ant; , , ,a b i c  
are user-defined parameters that control the influence 
of , , giz iz izx h  and hiz respectively; S  is a  probabilistic 
transition rule that defines the probability Pij of an ant 
moving from node i to node  j. 

In presented case, in the modified ant colony 
optimization algorithm ACOmod, unlike the classical 
ACO, two additional local heuristics giz  and hiz are used 
in Equation (1). In addition, according to the delivery 
time minimization criterion in DTSPTW, the visibility 

/t1iz izh = , where tiz - is the expected travel time from 
node i to node z. Then, taking into account the heuristics 
giz  and hiz, the transition probability Pij is determined 
as follows:

urban road network and utilise consolidated data on the 
dynamic characteristics of traffic flows on sections of 
this network from any sources available at the time of 
operation (e.g., GIS, road sensors, mobile devices) during 
the optimization process.

3	 Research methodology

In this article are presented the results of 
developing a  real-time DVRPTW solution method for 
urban last-mile transport logistics, based on solving 
an asymmetric Dynamic Traveling Salesman Problem 
with Time Windows, taking into account the actual 
configuration of the urban road network and traffic 
flow dynamics on its sections. Following [26], the 
urban road network is represented as a bidirectionally 
oriented weighted graph, where the nodes correspond to 
delivery points with time windows and depots. The arcs 
contain a sequence of urban road network sections, the 
traversal of which defines the optimal route between the 
corresponding pair of delivery points at specific times of 
the day. The solution of the DVRPTW in urban last-mile 
transport logistics is based on the following assumptions.

Delivery points may include customers, hubs, and 
parcel lockers. Parcel lockers are located in easily 
accessible areas for both couriers and customers, such as 
large residential neighborhoods or near public transport 
hubs.

The dynamic nature of the problem is due to the 
fact that routes may change in real time as a result of 
new orders or unforeseen events (e.g., changes in traffic 
flow dynamics on the urban road network sections, road 
congestion, weather conditions, etc.).

The delivery time windows (slots) generally differ 
for each delivery point, depending on factors such as 
order priority; however, the overall delivery timeframe 
is defined within the limits of a single day (e.g., night to 
morning, morning to noon, noon to evening, etc.).

For hubs and parcel lockers, the volume of goods 
and the number of delivery points are sufficiently large, 
and the delivery points are spaced far apart, making 
the use of pedestrian couriers and couriers on “green” 
transport modes inefficient in Dynamic Traveling 
Salesman Problem with Time Windows solutions. The 
use of bicycles, drones, or electric scooters is applied 
for short distances - from hubs to parcel lockers and 
from parcel lockers to customers - which aligns with the 
concept of sustainable development.

In urban settings, dynamic routing for deliveries 
from hubs to parcel lockers and from parcel lockers to 
customers is generally not relevant, as the movement 
is largely unaffected by traffic dynamics (couriers travel 
on foot, by bicycle, or scooter over relatively short 
distances).

The distribution of time windows at the delivery 
points allows all deliveries in the dynamic problem 
under consideration to be performed by a single vehicle.
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h , while the degree of influence of the time windows 
is controlled through the user-defined parameters. For 
example, in the cases where the strict adherence to time 
windows is required, higher values can be assigned to 
the parameters i , and c . Conversely, if the priority is 
to minimize delivery time tmin, it is recommended to use 

/d1iz izh =  instead of /t1h=  and to assign a higher 
value to the parameter b . Thus, the proposed method 
enables the implementation of the Pareto optimality 
concept for multi-objective optimization.

Based on the developed method, the adaptable 
information system DVRPTW system has been proposed 
for use in urban last-mile transport logistics. The model 
of this system is schematically illustrated in Figure 1. 
Adaptable information system DVRPTW performs two 
main functions: it monitors the state of the urban road 
network based on section characteristics obtained from 
various data collection sources, and it supports the 
dynamic online optimization of routes using current or 
historical urban road network condition data.

To address the urban road network state monitoring 
task, it is necessary to collect and process data from 
all the available sources of information regarding the 
dynamic and sections static characteristics of this 
network. In this context, a  key role is played by the 
monitoring of dynamic characteristics of urban road 
network sections, such as traffic flow parameters 
(average speed, density and intensity), environmental 
indicators (emissions of carbon dioxide (CO2), particulate 
matter (PM), nitrogen oxides (NOx), sulfur oxides (SOx), 
volatile organic compounds (VOCs), etc.), noise pollution 
and others. Particular attention should be given to 
monitoring of environmental indicators, which play 
a  significant role in the implementation of modern 
urban transport logistics methods aimed at realizing the 
concept of sustainable development.

In the absence of current values for certain dynamic 
characteristics of an urban road network section, they 
can be estimated based on the available current values 
of other characteristics and historical data. For example, 
in [27], the average traffic flow speed is calculated 
through an approximation using the current data on 
traffic intensity at the section under study and historical 
data on traffic density from a  representative section 
within the homogeneous cluster of urban road network 
to which the section belongs.

To collect and store data on the characteristics 
of sections for the purpose of generating consolidated 
information on urban road network conditions, the 
proposed adaptable information system DVRPTW 
includes a dedicated subsystem called the “Urban Road 
Network State Monitoring Subsystem” (see Figure 1). 
This subsystem contains modules for processing and 
storing information on the condition of sections from 
various sources, such as GIS platforms, traffic sensors, 
air pollution detectors, VANET, MANET systems, and 
others. The system administrator configures access 
to available data sources and sets up update triggers 
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	(2)

where the heuristic giz  is calculated according to [32] 
as follows:

, .
expg G G

G

otherwise
1

1

0

0
iz iz avg

iz$
d= + -^ ^ hh* 	 (3)

Here Giz = bz – tiz, where bz is the upper bound of 
the time window at node z, and tiz  is the estimated 
arrival time of the ant traveling from node i  to node z; 
d  is user-defined parameter, which controls the slope 
of the function; Gavg is average of all Gij where Gij ≥ 0,  
j !   Ni [32]. It is worth noting that although Equation (3) 
formally allows giz  = 0, in the algorithm implementation, 
it is advisable to replace zero with a  sufficiently small 
non-zero value to avoid zero transition probabilities in 
Equation (2).

According to [32], the heuristic hiz in Equations (1) 
and (2) is calculated as follows:

, .
exp

otherwise
h H H

H
1

1

0

0
iz iz avg

iz$
m= + -^ ^ hh* 	 (4)

Here Hiz = az – tiz, where az is the lower bound of 
the time window at node z, and tiz  is the arrival time 
of the ant currently at node i, traveling to node z; m  is 
user-defined parameter, which controls the slope of the 
function; Hava is average of all Hij ,where Hij > 0, j !  Ni 
[32].

In the classical ant colony algorithm [31] ants 
are uniformly distributed across all the nodes at the 
start of each iteration to enhance exploration. In 
contrast to [31], the present approach requires placing 
all ants at the same node to correctly account for the 
time window constraints, as time window feasibility 
necessitates a  consistent temporal reference across all 
the ants within a single iteration. Thus, in the proposed 
modification of the Ant Colony Optimization model, 
the artificial ants start each iteration from a  single 
location - either from the current position of the vehicle 
in the dynamic version of the Travelling Salesman 
Problem with Time Windows or from the starting depot 
in its static version. Although this approach somewhat 
reduces the algorithm‘s exploration capabilities, this 
limitation can be mitigated by appropriately decreasing 
the value of the parameter q0 in Equation (1). 

Thus, the main advantages of using the proposed 
ACOmod algorithm for solving the Dynamic Travelling 
Salesman Problem with Time Windows include its 
relatively high performance, configurational flexibility 
to meet user-specific needs, and the minimization of 
vehicle idle time at delivery points. At the same time, 
the optimization criterion can be defined by redefining 
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of the optimized path, depending on changes in current 
traffic characteristics on urban road network sections, 
the appearance of new orders, and other factors.

The operation of each subsystem is closely linked to 
the specifics of accessing information sources regarding 
the urban road network characteristics. To store 
historical data and enable its subsequent analysis, 
the system includes a  dedicated data warehouse. For 
deploying such a  system, the use of modern cloud 
technologies is recommended.

In authors‘ prior work [33] the architectural 
implementation of adptable intelligent transport system 
for dynamic routing is presented. The system‘s technical 
implementation leverages Amazon Web Services 
(AWS), which provides high level of cybersecurity, 
reliability, and system performance. The urban road 
network monitoring subsystem is built on a  serverless 
architecture, enabling the robust scalability and efficient 
resource utilization when processing large volumes of 
real-time data from diverse sources. A  dedicated data 
synchronization process leverages the AWS services such 
as Lambda, SQS, and DynamoDB to collect and store 
current urban road network characteristics. This real-
time data is then consumed by the route optimization 
subsystem to support dynamic re-optimization. The 
re-optimization process is automatically triggered during 
route execution according to user-defined configurations, 
ensuring that the system remains both responsive  
and reliable.

according to user requirements. The subsystem retrieves 
data on urban road network section conditions based on 
these predefined triggers and stores it for subsequent 
use in dynamic routing processes.

In the proposed adaptable information system 
DVRPTW, the task of dynamic user routing is handled by 
the “Route Optimization Subsystem” (see Figure 1). This 
subsystem incorporates various optimization methods 
and algorithms to solve different types of dynamic 
routing problems. It is important to emphasize that 
the optimization methods included in the system must 
be sufficiently versatile to address problems involving 
complex, multi-factor optimization criteria, while also 
being flexible and responsive to dynamic changes in 
the urban road network state. In this study, the ACOmod 
algorithm is employed, with its application justified in 
the preceding sections.

At the start of the journey from the depot, the 
user submits a request to the system, including all the 
necessary input data according to the specific VRP type, 
such as the route optimization criterion, the locations of 
delivery points, their respective time windows, and/or 
other constraints. The Route Optimization Subsystem 
retrieves current data on the state of the urban road 
network in the required representation based on the 
problem type, determines the optimal solution using 
the most appropriate method for the given task, and 
sends the optimized solution back to the user. Dynamic 
re-optimization of the route occurs during the execution 

Figure 1 Model of the adaptable information system for solving the DVRPTW with consideration  
of real-time urban road network conditions
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the proposed method described in Section 3, with 
the following parameter values: q0 = 0.9, a   = 1,  
b  = 5, i  = 0.5, c  = 3, d  = m  = 0.05,  
t  = 0.1, m = 10. This parameter configuration, 
except q0, was adopted from [32]. The value of 
q0 was reduced to enhance ACOmod exploration, 
which refers to the algorithm’s ability to search 
a  broader range of potential solutions rather 
than prematurely converging. Such exploration 
is particularly important for the re-optimization 
process in dynamic scenarios.

•	 Unloading of goods at each store takes 15 minutes.
•	 Route re-optimization is performed after the goods 

are unloaded at a  delivery point, and before the 
vehicle departs for the next destination.

•	 In the course of the simulation studies based on the 
proposed method, dynamic routing is carried out 
using the real-world data on the state of the urban 
road network, including GIS-based traffic data for 
sections (obtained from the Azure Maps service 
[35]) and data from road sensors located on selected 
sections.

•	 After completing deliveries to all the stores, the 
truck must return to the warehouse (depot).
The results of the simulation study on dynamic 

routing of goods deliveries to the specified “Rozetka” 
stores, taking into account time windows, are presented 
in Table 2. The symbol * marks the delivery point 
at which re-optimization is performed. The column 
“Current Time” indicates the time of day when the route 
was re-optimized. The column “Optimal Route” lists the 
optimal sequence of delivery points obtained as a result 
of re-optimization at the respective delivery point. The 
column “Current” provides the expected time (in seconds) 
for the optimal route obtained through re-optimization 
at that delivery point. The column “Previous” shows the 
expected time of the optimal route obtained from the 
previous re-optimization but recalculated for the current 
dynamic state of the network. The column “Initial” gives 
the expected time for the optimal route obtained from 
the initial optimization (at the time of departure from 

4 	 Result and discussion

To evaluate the proposed DVRPTW method within 
the context of urban last-mile transport logistics, 
a  series of simulation studies were conducted. The 
selected case involved the distribution of goods to retail 
outlets in Kyiv. During the simulation, a  Dynamic 
Traveling Salesman Problem with Time Windows was 
solved in which a delivery vehicle transported customer 
orders from a  warehouse (depot) to 10 designated 
delivery points and then returned to the depot. Those 
delivery points corresponded to branches of the well-
known e-commerce retailer „Rozetka,“ which possesses 
a  developed logistics infrastructure including stores, 
pickup points, and parcel lockers [34]. 

The addresses of the stores (delivery points) and the 
corresponding time windows for receiving the goods are 
summarized in Table 1. The column “Point ID” contains 
the identifiers of the points (the depot is assigned ID 
0, and delivery points are numbered 1-10); the column 
“Address” specifies the address of each point; and the 
column “Time Window” indicates the time interval 
during the day which the respective delivery point can 
accept goods from the depot.

A  graphical representation of the delivery point 
locations is shown in Figure 2.

The simulation studies were conducted under the 
following conditions:
•	 A  truck loaded with customer orders departs at 

7:30 AM from the warehouse (depot) - Point 0 (82 
Kyrylivska Street).

•	 Due to the specific organization of store operations 
(e.g., workload balancing, urgent orders, etc.), each 
store has its own delivery schedule, meaning a static 
time window during which the delivery point is able 
to accept goods (see Table 1).

•	 The optimization criterion is the minimization 
of the total time spent on delivering goods to the 
specified stores in strict compliance with the defined 
time windows, followed by a return to the warehouse 
(depot). The optimization was carried out using 

Table 1 Warehouse and shops (delivery points) with time windows

Point ID Address Time Window

0 82 Kyrylivska Street

1 24 Beresteiskyi Avenue 9:30 - 13:00

2 40 Mytropolyta Vasylia Lypkivskoho Street 9:30 - 11:30

3 50 Antonovycha Street 9:00 - 12:30

4 2 Vasylkivska Street 9:30 - 11:30

5 24 Lesi Ukrainky Boulevard 8:30 - 11:00

6 3A Mykhaila Hryshka Street 8:30 - 10:30

7 22/20 Petra Hryhorenka Avenue 8:00 - 11:00

8 2A Kharkivske Highway 8:00 - 10:30

9 12V Voskresenska Street 6:30 - 9:30

10 7/11 Khreshchatyk Street 6:00 - 9:00
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across the urban road network sections and the failure 
of some delivery time windows to align with the arrival 
times generated by the previously optimized route 
configurations, based on earlier (previous) states of 
traffic dynamics. 

For instance, at 08:24:26, the optimal route was 
adjusted: the section 4-3-2-1 was restructured to 4-2-3-
1. In this case, the travel time of the newly optimized 
route (18247 s ≈ 304 min) became longer than that of 
the previously determined optimal route (17974 s  ≈ 
300 min) due to an increase in traffic density - and 

the depot), but recalculated for the current dynamic 
state of the network, as well. In parentheses is shown 
the section of the route that is modified as a  result of 
the re-optimization.

As evident from Table 2, the simulation studies, 
conducted using the proposed DVRPTW method in 
urban last-mile transport logistics, revealed several 
effects associated with the restructuring of the optimal 
route. For example, at specific times of day - 08:24:26, 
08:48:53, and 09:16:05 - the optimal route is rebuilt (see 
Table 2) due to changes in traffic flow load distribution 

Figure 2 Locations of the warehouse (0) and delivery points (1, …, 10) on the map of Kyiv

Table 2 Results of dynamic freight delivery routing with time windows in the urban road network of Kyiv

Current time Optimal route
Optimal route expected time, s

Current Previous Initial

07:30:00 0*10-9-8-7-6-5-4-3-2-1-0 15792 - -

07:57:15 0-10*9-8-7-6-5-4-3-2-1-0 15755 15755 15755

08:24:26 0-10-9*8-7-6-5-4-(2-3)-1-0 18247 17974 17974

08:48:53 0-10-9-8*(5-7-6)-4-2-3-1-0 18420 18625 18248

09:16:05 0-10-9-8-5*(6-7)-4-(3-2)-1-0 17342 18469 17517

09:42:30 0-10-9-8-5-6*7-4-3-2-1-0 16645 16645 16766

10:01:12 0-10-9-8-5-6-7*4-3-2-1-0 16335 16335 16438

10:29:03 0-10-9-8-5-6-7-4*3-2-1-0 16237 16237 16359

10:53:36 0-10-9-8-5-6-7-4-3*2-1-0 16168 16168 16283

11:15:42 0-10-9-8-5-6-7-4-3-2*1-0 16197 16197 16331

11:36:35 0-10-9-8-5-6-7-4-3-2-1*0 16184 16184 16324

11:59:44 0-10-9-8-5-6-7-4-3-2-1-0* - 16184 16324
* the current delivery point where re-optimization is being performed
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ACOmod, which incorporates the concept of Pareto 
optimality for multi-objective optimization. Based on 
the developed method, an adaptable information system 
for dynamic vehicle routing with static delivery time 
windows has been proposed. The presented system is 
a universal solution for addressing the dynamic routing 
problems in transport logistics, as it incorporates 
capabilities for accounting for the actual configuration 
of the urban road network and enables the real-time use 
of consolidated data on dynamic traffic characteristics 
across network sections from any available sources at 
the time of operation (e.g., GIS, road sensors, mobile 
devices, etc.). 

To validate the proposed method, simulation studies 
were conducted to determine the optimal route within 
the framework of an asymmetric Dynamic Traveling 
Salesman Problem with Time Windows, using travel 
time as the optimization criterion. These studies 
conducted in the urban road network of Kyiv, with 
deliveries to e-commerce retailer Rozetka pickup 
points, demonstrated the method’s effectiveness and 
adaptability. The results showed that the optimal route 
is dynamically restructured in response to changing 
traffic load, ensuring that the deliveries remain within 
designated time windows. For example, some deliveries 
that would have violated their time windows under 
previously determined routes were successfully rebuilt 
through real-time optimization, and total travel time 
reductions of up to 6% were observed due to improved 
route sequence. These findings highlight the method’s 
capability to adjust to traffic fluctuations, restore 
compliance with delivery schedules, and reduce overall 
route durations, confirming its practical value for urban 
last-mile logistics.

Despite these positive results, some limitations 
should be noted. The method was tested in a medium-
sized urban segment with a  single-vehicle case, and 
scaling to very large metropolitan networks may 
significantly increase computational requirements. While 
the architecture of the proposed system theoretically 
does not impose strict limitations on computing capacity, 
in practice its performance and stability are strongly 
influenced by the hosting environment, including 
the cloud infrastructure configuration and resource 
allocation. In addition, the approach assumes reliable 
and continuous access to traffic and environmental data; 
in the real-world conditions, incomplete or inconsistent 
data streams may reduce solution accuracy. Finally, 
the applicability of the method in other contexts - such 
as multimodal logistics systems, suburban areas, or 
cross-border transport corridors - remains to be further 
investigated. These limitations outline promising 
directions for future research.

Overall, the study demonstrates that developed 
method and information system DVRPTW propose 
a practical and adaptable approach to dynamic routing 
in urban logistics, effectively balancing operational 
efficiency and delivery reliability.

consequently, a  decrease in average speed - on certain 
sections of the urban road network. At the same 
time, an interesting observation is made (see Table 2). 
Route optimization at Point 9 at 08:24:26 reveals that 
the previously determined optimal route at Point 10 
at 07:57:15 (0-10*-9-8-7-6-5-4-3-2-1-0) fails to ensure 
compliance with the delivery time windows at some 
of the subsequent points according to the specified 
optimal route configuration. Specifically, according to 
this route, arrival and completion of unloading at Point 
2 is scheduled for 11:36:52 (see Table 2), whereas the 
time window for Point 2 is 09:30 - 11:30 (see Table 1). 
In contrast, for the updated optimal route generated 
at Point 9 at 08:24:26 - taking into account the current 
urban road network states - arrival and completion 
of unloading at Point 2 occurs at 11:12:49, which 
ensures compliance with the established delivery time  
window.   

Next, at Point 8 at 08:48:53, the optimal route is 
further rebuilt - based on updated trafic data - to the 
configuration (0-10-9-8*-5-7-6-4-2-3-1-0), resulting in 
a  reduction of the expected total delivery time from 
18,625 s (≈ 310 min) to 18,420 s (≈ 307 min) (see Table 
2). Accordingly, at Point 5 at 09:16:05, re-optimization 
also results in a  rebuilding of the optimal route to 
the configuration (0-10-9-8-5*-6-7-4-(3-2)-1-0), which 
reduces the expected total route time by 6.1% (1,127 
s ≈ 19 min) - from 18,469 s  (≈ 308 min) to 17,342 s  (≈ 
289 min) (see Table 2). Interestingly, the rebuilding 
of the optimal route at Point 5 resulted in a  reverse 
inversion of the sequence (3-2) to (2-3), which had 
previously occurred during the re-optimization at Point 
9. Such a  change in route configuration, resulting 
from decreased traffic intensity on urban road network 
sections, not only shortened the total route duration, 
but restored compliance with the time windows that 
had been violated at Point 9 at 08:24:26, as well. Now, 
the completion of delivery and unloading at Point 2 is 
scheduled within the designated time window of 09:30 - 
11:30, specifically at 11:26:13. 

Thus, the results of the simulation studies 
demonstrate the sufficient effectiveness and adaptability 
of the developed dynamic routing method with static 
time windows for urban last-mile transport logistics. 

5	 Conclusion

This study addressed the dynamic routing problems 
in urban last-mile transport logistics by developing 
a  multi-criteria DVRPTW method that accounts non-
stationary traffic dynamics on urban road network 
sections in real time.

The optimization criteria in this case are the 
minimization of total transport costs (in terms of 
route time) and the maximization of overall customer 
satisfaction. The solution strategy is based on a modified 
AI optimization method using the ant colony system, 
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