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Resume
With aging populations and rising healthcare demands, efficient patient 
transportation has become a critical challenge, particularly in the context 
of infection control. In  this  paper  an  extended  mixed-integer linear 
programming (MILP) model for optimizing patient transport in urban 
environments is presented, with a focus on the separate transportation 
of infectious and non-infectious individuals. The model incorporates time 
windows, maximum allowable ride durations, and mandatory vehicle 
disinfection requirements. Experimental results obtained using CPLEX 
demonstrate that incorporating infection control measures significantly 
influences both route planning and computational complexity. The proposed 
approach provides a scalable foundation for future multi-vehicle extensions 
and cost-based optimization strategies.
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or private vehicles. However, these alternatives are 
frequently unsuitable for elderly individuals or those 
with reduced mobility, as they may involve multiple 
transfers and long walking distances. Furthermore, 
private vehicle use is not always a viable option for 
older adults due to physical or cognitive limitations, and 
services such as taxis or ride-hailing platforms (e.g., 
Uber) can be prohibitively expensive for regular use.

In  this  study  a  door-to-door,  ride-sharing-
based   patient   transportation   model   that   operates  
with  a  single vehicle is introduced. The model builds 
upon the well-established Dial-a-Ride Problem (DARP) 
framework, which is widely used in demand-responsive 
transportation systems [1]. It is designed to coordinate 
multiple patient pickups and drop-offs, while respecting 
strict time windows and compatibility constraints. The 
objective was to minimize the total distance traveled by 
a vehicle, while maximizing its utilization [2].

In the previous work [3] authors studied a problem 
in which patients are transported to the same hospital 
by a single vehicle. Each patient specifies their desired 
arrival time, earliest possible pickup time, and a 

1 	 Introduction 

Modern transportation systems have undergone 
the rapid transformation over past decade, primarily 
driven by the spread of digital platforms and the rise 
of real-time service coordination. In both passenger 
and freight sectors, technological advancements have 
enabled unprecedented levels of flexibility, speed, 
and user-centered customization. Same-day delivery 
services, app-based ride-hailing platforms, and real-
time tracking have become standard features across 
much of the logistics landscape. These developments 
have not only improved operational efficiency but 
have also reshaped customer expectations regarding 
accessibility and responsiveness.

While many aspects of transportation have advanced 
significantly, the mobility of nonemergency patients, 
particularly in urban healthcare environments remains 
a complex, evolving area with ongoing challenges. While 
the ambulances and specialized vehicles are available 
for critical or long-distance cases, patients attending 
routine appointments often rely on public transport 
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presents additional challenges, including medical 
requirements, service reliability, and personnel 
scheduling. Lim et al. [7] proposed a methaheuristic to 
solve a patient transportation problem in Hong Kong that 
includes staff scheduling as well. Luo et al. [8] further 
extended this work by including constraints for the staff 
breaks and rest periods, and developed a two-phase 
branch-and-price-and-cut algorithm. In rural Austrian 
contexts, Armbrust et al. [9] investigated a dynamic 
deterministic DARP in which the goal was to minimize 
a linear combination of the total kilometer travelled by 
the vehicles, the number of the vehicles and the number 
of the unmet requests. Their hybrid approach combined 
MILP and large neighborhood search techniques.

One of the most relevant themes for this study 
is passenger compatibility, especially in the context 
of infection risk. Molenbruch et al. [10] proposed a 
bi-objective DARP formulation in which the compatible 
patients were grouped based on medical needs. Schulz [11] 
introduced a more refined compatibility model, defining 
customer types based on their ability or willingness 
to share a vehicle. Their branch-and-cut algorithm 
ensured that mutually incompatible passengers would 
not be transported together. Further advancements 
were made by Lokhandwala et al. [12], who introduced 
a graded preference scale for ride-sharing, ranging 
from those who prefer to ride alone to those who prefer 
shared travel. The authors applied a column generation 
approach to address the problem.

The issue of incompatibility also arises in freight 
and postal delivery contexts. Colombi et al. [13] studied 
the rural postman problem with incompatible deliveries, 
modelling route penalties based on pairing constraints. 
Bernardino et al. [14] applied iterated local search to 
solve the family Travelling Salesman Problem (TSP) 
with incompatibility constraints. In the freight sector, 
Manerba et al. [15] and Gendreau et al. [16] developed 
multivehicle models to address pairwise incompatibility 
between transported products, leveraging exact methods 
including branch-and-cut and hybrid column generation. 
Factorovich et al. [17] studied the pickup and delivery 
problem with incompatibilities. In their work, a single 
vehicle is used to transport the goods, but the problem 
does not contain time windows or maximum riding 
times.

Despite the breadth of research on compatibility-
aware routing, this literature review found no prior 
studies that explicitly integrate the infection-based 
patient incompatibility and mandatory vehicle 
disinfection procedures into a MILP-based DARP model. 
This represents a significant research gap, especially 
in the post-pandemic context where infection control 
measures are crucial in public health transportation. 
The present study addresses this gap by developing 
a model that combines infection-aware constraints 
with exact optimization techniques, making it 
directly applicable to real-world healthcare logistics  
planning.

realistically acceptable maximum travel duration. The 
model also takes into account the number of passengers 
at each pickup location, as well as their specific mobility-
related requirements. 

Four MILP models  of  the  problem were proposed   
and tested  on  5  different  sized  problems. The largest 
problem contained 30 pickup points and 60 patients. The 
best model was able to find the optimal solution in all of 
the problems in less than 60 seconds.

In this article, the previously examined patient 
transportation problem is extended by incorporating 
two real-world features that are essential for practical 
implementation: (1) the incompatibility between 
infectious and noninfectious passengers, who must 
not share the same route segment; and (2) mandatory 
vehicle disinfection after the transportation of infectious 
patients, which requires the vehicle to return to the 
depot before continuing its route. These additional 
constraints are motivated by infection prevention 
protocols, particularly those introduced during the 
COVID-19 pandemic, and they are critical for designing 
safe and regulation-compliant patient logistics systems.

To address the extended problem, a mixed-integer 
linear programming (MILP) model is proposed that 
incorporates infection-aware constraints, such as 
passenger incompatibility and mandatory vehicle 
disinfection. The model is tested on various infection 
scenarios to evaluate its efficiency and scalability. By 
embedding these constraints into an exact optimization 
framework, this study contributes both to the theoretical 
advancement of compatibility-sensitive DARP 
models and to the practical development of patient 
transportation systems that comply with modern public 
health standards.

2	 Literature overview

The Dial-a-Ride Problem (DARP) is a well-
established framework in transportation research, 
particularly suited for modelling the demand-responsive 
services where users specify pickup and drop-off 
locations, time windows, and service preferences. In its 
classical form, a fleet of vehicles departs from a depot 
to fulfill transport requests while minimizing total 
travel costs or distance, subject to vehicle capacities and 
temporal constraints [4].

Over the past decade, DARP has been adapted 
for a variety of real-world applications. Bongiovanni 
et al. [5] addressed an electric autonomous DARP 
variant, taking into account energy constraints and 
recharging infrastructure, by applying a branch-and-cut 
algorithm. Similarly, Agra et al. [6] explored the use of 
a new branching algorithm to solve a continuous-time 
inventory routing problem involving both pickups and 
deliveries, showcasing the flexibility of the DARP model 
in logistics domains.

Within the healthcare sector, patient transportation 
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Problem (TSP) with additional constraints.
To model the hospital connections, we define an 

extended graph G’ = (V’, E’), where each pickup point 
i has a corresponding hospital point i + N. The G’ is a 
directed graph whose vertices are numbered from 0 to 
2N + 1. Vertex 0 is the depot, the vertices labeled as 
1, 2, … N are representing the pickup points. For each 
pickup point i there is a corresponding ’hospital point 
in G’ denoted by i + N. For each pickup point i patients 
at point i have to be transported to the corresponding 
hospital point i + N. Thus, the new graph G’ has N 
hospital points. In G’, the traveling time and the 
distance between points i and j are defined as follows: 
•	 if i is a pickup point or the depot, and j is a pickup 

point, then the traveling time and the distance 
between points i and j in G’ are the same as in G;

•	 if i is a pickup point or the depot, and j is a hospital 
point (i.e., N + 1 < = j <= 2N + 1), then the traveling 
time and the distance between points i and j in G’ 
are the traveling time and the traveling distance 
between i and the hospital in G; 

•	 if i and j are both hospital points, then the traveling 
time and the distance between points i and j are 0 
in G’; 

•	 if i is a hospital point, then the traveling time and 
the distance between point i and point 0 (i.e. the 
depot) in G’ is the traveling time and the distance 
between the hospital and the depot in G;

•	 if i is a hospital point corresponding to a pickup 
point with noninfectious patients and j is a pickup 
point, then the traveling time and the distance 
between points i and j in G’ are the traveling time 
and the distance between the hospital and j in G;

•	 if i is a hospital point corresponding to a pickup 
point with infectious patients and j is a pickup 
point, then the distance between i and j in G’ is the 
sum of the distance between the hospital and the 
depot in G and the distance between the depot and j 
in G (i.e., Dij = Di0 + D0j);

•	 finally, if i is a hospital point corresponding to a 
pickup point with infectious patients and j is a 
pickup point, then the traveling time from i to j in 
G’ is set to the sum of the traveling time from the 
hospital to the depot in G, the traveling time from 
the depot to j in G and the time of the disinfection 
procedure at the depot (i.e., Tij = Ti0 + T0j+disinf).
It can be easily seen that a tour in G’ yields a tour in 

G. However, a tour in G’ may not yield a feasible solution 
of the original problem. To show this, a problem with 4 
pickup points is considered. In this case, vertex 0 is the 
depot, vertices 1/2/3/4 are the pickup points and vertices 
5/6/7/8 are the hospital points in G’. The tour 0-1-6-4-
3-2-5-7-8-0 is not a feasible tour since the patients at a 
pickup point 2 are picked up after that vehicle visited 
the corresponding hospital point 6. Furthermore, the 
tour 0-1-2-3-5-6-4-8-7-0 is not a feasible tour either, 
because patients at pickup point 3 are transported to 
the hospital but they do not get off the vehicle there (the 

3	 Problem description

Let G = (V, E) be a directed graph whose vertices 
are labeled from 0 to N + 1, where N is the number of 
the pickup places. The depot is represented by point 
0, the hospital is represented by point N + 1, and the 
pickup points are represented by the vertices 1, 2, … 
N. Every arc (i, j) of the graph has two nonnegative 
weights: the traveling distance between points i and j 
and the traveling time from point i to point j. Starting 
from a depot a single vehicle visits the pickup points 
and transports the patients to the hospital. After all 
the patients are transported to the hospital, the vehicle 
returns to the depot. There is a predefined time window 
during which the vehicle must start and complete its 
tour. In the examined scenarios, the operating company 
allows vehicle operations only between 6:00 AM and 6:00 
PM. This constraint limits both the earliest departure 
from the depot and the latest return, ensuring that all 
the patient transport activities occur within standard 
working hours. Furthermore, the vehicle has two 
different capacities, one for the number of the patients, 
and another one for the number of the mobility-impaired 
patients that can be transported by a vehicle. For 
each pickup point i a list containing the following key 
parameters is known:
•	 The number of patients at point i,
•	 The number of mobility-impaired patients at point i,
•	 The earliest time the vehicle can pick up the 

passengers at point i,
•	 An upper bound on the riding time of the passengers 

at point i,
•	 A due date at which the passengers at point i have 

to arrive at the hospital,
•	 The boarding time of the patients at point i on the 

vehicle, and
•	 The possible presence of infectious patients among 

the passengers at point i.
The vehicle has to visit each pickup point exactly 

once, which implies that for each pickup point, neither 
the number of the patients nor the number of the 
mobility-impaired patients exceeds the corresponding 
capacity of the vehicle. Since the goal is to protect 
patients from infection, infectious and noninfectious 
patients cannot be transported together. Furthermore, 
after the vehicle arrives at the hospital with infectious 
patients, it has to go back to the depot and undergo a 
disinfection procedure before continuing its tour. Finally, 
once the vehicle arrives at the hospital all the patients 
must get off the vehicle. The goal is to find the optimal 
route for a vehicle, which satisfies all of the constraints 
and minimizes the total distance run by the vehicle.

4	 Mathematical formulation

To formulate the problem as a MILP model, the 
problem is first transformed into a Traveling Salesman 
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solution forms a single continuous tour visiting all nodes 
exactly once. For the depot, u0 = 0.

Binary variables:
•	 xi,j: equals 1 if the vehicle travels from point i to 

point j; 0 ≤ i, j ≤ 2N.

5	 Constraints of the model

The mathematical formulation of the problem 
includes several constraints, which define the structure 
of the vehicle’s route and the conditions for transporting 
patients. These constraints ensure the feasibility and 
efficiency of the solution.
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vehicle visits pickup point 3, then it travels to hospital 
points 5 and 6, but before reaching hospital point 7 (the 
delivery point of pickup point 3) it visits pickup point 4). 
So, in order that the solution of the TSP in G’ yields the 
optimal solution of the original problem, the model has 
to ensure that:
•	 the constraints associated with the vehicle 

(capacities of the vehicle (patients, mobility-
impaired patients) and the passengers (maximum 
riding time, earliest pickup time, maximal arrival 
time, incompatibility restrictions) are satisfied;

•	 each pickup point i has to be visited earlier by 
the vehicle than the corresponding hospital point 
i+N; 

•	 if the vehicle visits the pickup points i1, i2, ...ik 
before traveling to a hospital point, then the 
vehicle has to continue its tour by visiting the 
hospital points i1 + N, i2 + N, ..., ik + N in the 
same order.
The following notations are used in the model:
Parameters:

•	 N: total number of pickup points,
•	 Di,j: distance between points i and j where 0 ≤ i,  

j ≤ 2N,
•	 Ti,j: time required to travel from point i to j, where 

0 ≤ i, j ≤ 2N,
•	 C1: maximum capacity of the vehicle for regular 

patients,
•	 C2: maximum capacity of the vehicle for mobility-

impaired patients,
•	 pi: number of regular patients at pickup point i;  

1 ≤ i ≤ N,
•	 dpi: number of mobility-impaired patients at pickup 

point i; 1 ≤ i ≤ N,
•	 ipi: indicator of the presence of an infectious patient 

at point i.; ipi = 1 if infectious, otherwise 0,
•	 Ii: maximum allowable travel time for patients at 

point i; 1 ≤ i ≤ N,
•	 ai: time required for boarding patients at point i;  

1 ≤ i ≤ N,
•	 tri: earliest time patients can be picked up at 

point i; 1 ≤ i ≤ N,
•	 tai: latest allowable arrival time at the hospital 

for patients from point i; 1 ≤ i ≤ N,
•	 A0: opening time of the depot,
•	 B0: closing time of the depot.

Continuous variables:
•	 pni: number of regular patients on the vehicle after 

visiting point i; 0 ≤ i ≤ 2N,
•	 dpni: number of mobility-impaired patients in the 

vehicle after visiting point i; 0 ≤ i ≤ 2N,
•	 mi: arrival time of the vehicle at point i; 0 ≤ i ≤ 2N.
•	 Integer variables
•	 ui; 0 ≤ i ≤ 2N.

The integer variable ui is an auxiliary variable 
used in the Miller–Tucker–Zemlin (MTZ) formulation 
to eliminate subtours [18]. It represents the order 
or position of vertex i in the route, ensuring that the 
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at the hospital before their due date. Constraints in 
Equations (23) and (24) state that the vehicle starts 
and finishes its tour in the opening time of the depot. 
Constraints in Equations (25) and (27) imply that if the 
latest arrival time at the hospital for patients at pickup 
point i is less or equal than the earliest pickup time of 
patients at point i, the vehicle can travel neither from 
i to j nor from j to i. Constraint in Equation (26) states 
that the vehicle has to move from a point to another 
point. Constraint in Equation (28) ensures that patients 
and infectious patients cannot be transported together. 
Finally, Equation (29) states the total distance travelled 
by the vehicle has to be minimized.

6	 Computational results

To evaluate the performance and scalability of 
the proposed MILP model, a series of computational 
experiments were conducted using IBM ILOG CPLEX 
Optimization Studio (version 22.1.0). The tests were 
performed on a personal computer equipped with an 
Intel Core i7-7700HQ CPU, 8 GB of RAM, and a 1 
TB SSD. Each test run was subject to a maximum 
time limit of 3,600 seconds. Except for enabling the 
strong branching strategy for variable selection, all 
the other solver parameters were kept at their default  
settings.

The test instances were generated based on a 
real-world urban environment in the city of Sopron, 
Hungary. All the travel distances and travel times 
between pickups, hospital, and depot locations were 
determined using Google Maps data under typical traffic 
conditions. The desired arrival times of patients from 
each pickup point to the hospital were generated using 
random number functions in Microsoft Excel to reflect 
realistic time window constraints. This dataset served 
as a basis for all computational experiments conducted 
in this study.

The experimental design included five test groups, 
categorized by the number of pickup points: 10, 15, 
20, 25, and 30. For each group, four infection-related 
scenarios were examined, varying the proportion of 
infectious patients across all pickup locations. These 
scenarios ranged from 0% (no infectious patients) to one-
third, two-thirds, and 100% of patients being infectious.

For each scenario, the objective was to minimize 
the total distance traveled, while satisfying all the 
constraints related to time windows, vehicle capacity, 
infection-based compatibility, and mandatory 
disinfection procedures. The results are summarized in 
Table 1.

Out of the 20 generated test instances, the MILP 
model was able to find the optimal solution in all the 
cases involving 10, 15, and 20 pickup points, typically 
within just a few seconds of computation time. For the 
25-pickup-point cases, the optimal solution was obtained 
for all four infection scenarios; however, the required 
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Equations (1) and (2) ensure that each point of 
G’ is visited by the vehicle exactly once. Constraints 
in Equations (3) to (6) are the subtour elimination 
constraints of the MTZ model of the TSP problem. 
Constraint in Equation (7) states that each pickup point 
is visited earlier by the vehicle than the corresponding 
hospital point. Equation (8) states that the vehicle 
travels from a pickup point i to a pickup point j if the 
vehicle travels from hospital point j + N (corresponding 
to a pickup point j) to hospital point i + N (corresponding 
to a pickup point i). This implies that if the vehicle visits 
pickup points i1, i2 … il, before going to a hospital point, 
the vehicle visits the corresponding hospital points in the 
reverse order, i.e., after i1 the vehicle visits the hospital 
points il+N, il−1+N, … i1+N. Constraints in Equations (9) to 
(12) ensure that after leaving the depot or a hospital 
point, there is no patient or mobility-impaired patient 
in the vehicle. Constraints in Equations (13) and (14) 
state that the number of patients or mobility-impaired 
patients cannot exceed the capacity of the vehicle. 
Constraints in Equations (15) and (16) ensure, that if 
the vehicle travels from point i to point j, the number 
of patients (mobility-impaired patients) in the vehicle 
after leaving point j cannot be less, than the number 
of patients (mobility-impaired patients) in the vehicle 
after leaving point i plus the number patients (mobility-
impaired patients) at point j. Constraints in Equations 
(17) to (19) imply that if the vehicle visits point j after 
points i, the arriving time at point j cannot be less than 
the arriving time at point i plus the traveling time 
from point i to point j plus the boarding time of the 
patients (if there are any patient) at point i. Constraint 
in Equation (20) states that  the vehicle cannot arrive 
earlier at a pickup point than the earliest pickup time 
of the patients at that pickup point. Inequality in 
Equation (21) ensures that the maximal riding time 
constraints of the passengers are satisfied. Constraint 
in Equation (22) states that all of the patients arrive 
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pickup points can only be followed by another infectious 
pickup, and similarly for non-infectious points, which 
significantly reduces the number of feasible routing 
options, often resulting in longer total distances despite 
fewer depot returns.

For the largest test group with 30 pickup points, 
different outcomes were observed depending on the 
infection composition. In the case without infectious 
patients, the program was unable to prove optimality 
within the 3,600-second time limit, but it returned a 
feasible solution with an objective value of 111.09. At 
termination, the best lower bound was 93.60, indicating 
that the reported solution may still be improved. This 
highlights the substantial computational challenges 
associated with large-scale instances, even in the 
absence of infection-related constraints.

By contrast, when infectious patients were included, 
the problem became unfeasible due to the combined 
effect of vehicle capacity restrictions, mandatory 
disinfection times, and tight arrival time windows. In 
these cases, CPLEX was unable to prove infeasibility 
within the 3,600-second time limit. 

Table 1 summarizes the computational results 
across all generated test instances. Time values are 
reported in seconds. Entries marked with „–” denote 
cases where no feasible solution was found, while 
„>3600” indicates that the one-hour time limit was 
exceeded without proving optimality.

runtime was much higher than for the 10–20-point 
instances, which were solved within seconds. In terms of 
computation time, for problems with 25 pickup points, 
the mixed scenarios were easier for CPLEX to solve than 
the homogeneous ones. The optimal solution was found 
in 620.2 seconds when one-third of the patients were 
infectious, and in 392 seconds when two-thirds of the 
patients were infectious. By contrast, the homogeneous 
scenarios took considerably longer: 963.04 seconds with 
no infectious patients and 1001.84 seconds when all 
patients were infectious.

As expected, the presence of infectious patients 
resulted in longer total route distances due to additional 
constraints and the requirement to return to the depot 
for disinfection. For the 10-pickup point case, the 
scenario in which all patients were infectious (100%) 
yielded shorter optimal route lengths than those with 
mixed groups (e.g., 33% or 66% infectious). For the 
25-pickup point case, the scenario in which all patients 
were infectious also produced shorter optimal route 
lengths than the mixed case with two-thirds infectious 
patients. Furthermore, in the 25-pickup point case, 
this homogeneous scenario converged faster. This is 
not surprising: when all the patients are infectious, the 
vehicle must always return to the depot after visiting 
the hospital, but it can freely travel between any pickup 
points without compatibility restrictions. In contrast, 
with mixed groups, transitions are restricted, infectious 

Table 1 Experimental results

Initial data Results

Pick up points Infectious Points Time to find Optimum [s] Total distance of delivery tasks [km]

10 0 1.45 51.9

10 3 1.51 70.3

10 6 1.47 71.1

10 10 1.57 68.9

15 0 1.76 74.4

15 5 1.56 83.2

15 10 1.50 92.2

15 15 1.67 96.1

20 0 3.16 93.3

20 7 4.34 96.2

20 14 8.11 102.1

20 20 6.37 109.1

25 0 963.04 104.6

25 8 620.20 118.35

25 16 392 135.6

25 25 1001.84 125.6

30 0 >3600 
111.09 

(not proven opt.)

30 10 (n/f) -

30 20 (n/f) -

30 30 (n/f) -
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within the time limit. This suggests that compatibility 
constraints, while restrictive, can sometimes reduce the 
solution space in a way that accelerates optimization. 
Furthermore, the experimental results highlight the 
limitations of a single-vehicle model when scaling 
beyond 25 pickup points, thereby motivating the need 
for more scalable, multivehicle approaches.

The proposed model contributes not only to the 
theoretical advancement of compatibility-aware 
DARP formulations but provides practical insights 
for designing safe, efficient, and regulation-compliant 
patient transportation systems in urban healthcare 
settings, as well.

Future work should focus on extending the model 
to a multivehicle setting, incorporating cost-based 
objectives, including fuel consumption, labor costs, and 
addressing return-trip scenarios for patients. 
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7	 Conclusion

In   this   paper   a   mathematical   optimization   
model   for    patient   transportation   that   explicitly  
incorporates  infection  control  constraints is presented. 
Building on the classical Dial-a-Ride Problem (DARP) 
framework, an existing MILP formulation is extended 
by introducing two critical real-world features: 
(1) compatibility constraints that prohibit the joint 
transport of infectious and noninfectious patients, 
and (2) mandatory vehicle disinfection following the 
transport of infectious individuals.

The model accommodates a wide range of 
operational constraints, including passenger-specific 
pickup and drop-off time windows, maximum allowable 
ride durations, and vehicle capacity limits differentiated 
by passenger type (e.g., standard vs. mobility-impaired). 
To solve the problem, a modified MTZ-based formulation 
was employed and used IBM ILOG CPLEX to evaluate 
the model’s performance on across multiple scenarios 
involving varying numbers of pickup locations and 
different proportions of infectious patients.

The obtained computational results demonstrate 
that incorporating infection control constraints 
significantly increases the complexity of route planning, 
particularly in mixed-infection scenarios. At 25 pickup 
points, homogeneous scenarios, where either all or none 
of the patients are infectious, converged slower than 
mixed scenarios, while for the smaller instances (10, 15, 
and 20 points) every case was solved within seconds, 
and for 30 points no feasible solution was returned 
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