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Resume

With aging populations and rising healthcare demands, efficient patient
transportation has become a critical challenge, particularly in the context
of infection control. In this paper an extended mixed-integer linear
programming (MILP) model for optimizing patient transport in urban
environments is presented, with a focus on the separate transportation
of infectious and non-infectious individuals. The model incorporates time
windows, maximum allowable ride durations, and mandatory vehicle
disinfection requirements. Experimental results obtained using CPLEX
demonstrate that incorporating infection control measures significantly
influences both route planning and computational complexity. The proposed
approach provides a scalable foundation for future multi-vehicle extensions
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1 Introduction

Modern transportation systems have undergone
the rapid transformation over past decade, primarily
driven by the spread of digital platforms and the rise
of real-time service coordination. In both passenger
and freight sectors, technological advancements have
enabled unprecedented levels of flexibility, speed,
and user-centered customization. Same-day delivery
services, app-based ride-hailing platforms, and real-
time tracking have become standard features across
much of the logistics landscape. These developments
have not only improved operational efficiency but
have also reshaped customer expectations regarding
accessibility and responsiveness.

While many aspects of transportation have advanced
significantly, the mobility of nonemergency patients,
particularly in urban healthcare environments remains
a complex, evolving area with ongoing challenges. While
the ambulances and specialized vehicles are available
for critical or long-distance cases, patients attending
routine appointments often rely on public transport

or private vehicles. However, these alternatives are
frequently unsuitable for elderly individuals or those
with reduced mobility, as they may involve multiple
transfers and long walking distances. Furthermore,
private vehicle use is not always a viable option for
older adults due to physical or cognitive limitations, and
services such as taxis or ride-hailing platforms (e.g.,
Uber) can be prohibitively expensive for regular use.

In this study a door-to-door, ride-sharing-
based patient transportation model that operates
with a single vehicle is introduced. The model builds
upon the well-established Dial-a-Ride Problem (DARP)
framework, which is widely used in demand-responsive
transportation systems [1]. It is designed to coordinate
multiple patient pickups and drop-offs, while respecting
strict time windows and compatibility constraints. The
objective was to minimize the total distance traveled by
a vehicle, while maximizing its utilization [2].

In the previous work [3] authors studied a problem
in which patients are transported to the same hospital
by a single vehicle. Each patient specifies their desired
arrival time, earliest possible pickup time, and a
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realistically acceptable maximum travel duration. The
model also takes into account the number of passengers
at each pickup location, as well as their specific mobility-
related requirements.

Four MILP models of the problem were proposed
and tested on 5 different sized problems. The largest
problem contained 30 pickup points and 60 patients. The
best model was able to find the optimal solution in all of
the problems in less than 60 seconds.

In this article, the previously examined patient
transportation problem is extended by incorporating
two real-world features that are essential for practical
implementation: (1) the incompatibility between
infectious and noninfectious passengers, who must
not share the same route segment; and (2) mandatory
vehicle disinfection after the transportation of infectious
patients, which requires the vehicle to return to the
depot before continuing its route. These additional
constraints are motivated by infection prevention
protocols, particularly those introduced during the
COVID-19 pandemic, and they are critical for designing
safe and regulation-compliant patient logistics systems.

To address the extended problem, a mixed-integer
linear programming (MILP) model is proposed that
incorporates infection-aware constraints, such as
passenger incompatibility and mandatory vehicle
disinfection. The model is tested on various infection
scenarios to evaluate its efficiency and scalability. By
embedding these constraints into an exact optimization
framework, this study contributes both to the theoretical
advancement of compatibility-sensitive DARP
models and to the practical development of patient
transportation systems that comply with modern public
health standards.

2 Literature overview

The Dial-a-Ride Problem (DARP)
established framework in transportation research,
particularly suited for modelling the demand-responsive
services where users specify pickup and drop-off
locations, time windows, and service preferences. In its
classical form, a fleet of vehicles departs from a depot
to fulfill transport requests while minimizing total
travel costs or distance, subject to vehicle capacities and
temporal constraints [4].

Over the past decade, DARP has been adapted
for a variety of real-world applications. Bongiovanni
et al. [5] addressed an electric autonomous DARP
variant, taking into account energy constraints and
recharging infrastructure, by applying a branch-and-cut
algorithm. Similarly, Agra et al. [6] explored the use of
a new branching algorithm to solve a continuous-time
inventory routing problem involving both pickups and
deliveries, showcasing the flexibility of the DARP model
in logistics domains.

Within the healthcare sector, patient transportation

is a well-

presents additional challenges, including medical
requirements, service reliability, and personnel
scheduling. Lim et al. [7] proposed a methaheuristic to
solve a patient transportation problem in Hong Kong that
includes staff scheduling as well. Luo et al. [8] further
extended this work by including constraints for the staff
breaks and rest periods, and developed a two-phase
branch-and-price-and-cut algorithm. In rural Austrian
contexts, Armbrust et al. [9] investigated a dynamic
deterministic DARP in which the goal was to minimize
a linear combination of the total kilometer travelled by
the vehicles, the number of the vehicles and the number
of the unmet requests. Their hybrid approach combined
MILP and large neighborhood search techniques.

One of the most relevant themes for this study
is passenger compatibility, especially in the context
of infection risk. Molenbruch et al. [10] proposed a
bi-objective DARP formulation in which the compatible
patients were grouped based on medical needs. Schulz[11]
introduced a more refined compatibility model, defining
customer types based on their ability or willingness
to share a vehicle. Their branch-and-cut algorithm
ensured that mutually incompatible passengers would
not be transported together. Further advancements
were made by Lokhandwala et al. [12], who introduced
a graded preference scale for ride-sharing, ranging
from those who prefer to ride alone to those who prefer
shared travel. The authors applied a column generation
approach to address the problem.

The issue of incompatibility also arises in freight
and postal delivery contexts. Colombi et al. [13] studied
the rural postman problem with incompatible deliveries,
modelling route penalties based on pairing constraints.
Bernardino et al. [14] applied iterated local search to
solve the family Travelling Salesman Problem (TSP)
with incompatibility constraints. In the freight sector,
Manerba et al. [15] and Gendreau et al. [16] developed
multivehicle models to address pairwise incompatibility
between transported products, leveraging exact methods
including branch-and-cut and hybrid column generation.
Factorovich et al. [17] studied the pickup and delivery
problem with incompatibilities. In their work, a single
vehicle is used to transport the goods, but the problem
does not contain time windows or maximum riding
times.

Despite the breadth of research on compatibility-
aware routing, this literature review found no prior
studies that explicitly integrate the infection-based
patient incompatibility and mandatory vehicle
disinfection procedures into a MILP-based DARP model.
This represents a significant research gap, especially
in the post-pandemic context where infection control
measures are crucial in public health transportation.
The present study addresses this gap by developing
a model that combines infection-aware constraints
with exact optimization techniques, making it
directly applicable to real-world healthcare logistics
planning.
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3 Problem description

Let G = (V, E) be a directed graph whose vertices
are labeled from 0 to N + 1, where N is the number of
the pickup places. The depot is represented by point
0, the hospital is represented by point N + 1, and the
pickup points are represented by the vertices 1, 2, ...
N. Every arc (i, j) of the graph has two nonnegative
weights: the traveling distance between points i and j
and the traveling time from point i to point j. Starting
from a depot a single vehicle visits the pickup points
and transports the patients to the hospital. After all
the patients are transported to the hospital, the vehicle
returns to the depot. There is a predefined time window
during which the vehicle must start and complete its
tour. In the examined scenarios, the operating company
allows vehicle operations only between 6:00 AM and 6:00
PM. This constraint limits both the earliest departure
from the depot and the latest return, ensuring that all
the patient transport activities occur within standard
working hours. Furthermore, the vehicle has two
different capacities, one for the number of the patients,
and another one for the number of the mobility-impaired
patients that can be transported by a vehicle. For
each pickup point i a list containing the following key
parameters is known:
¢ The number of patients at point i,
¢ The number of mobility-impaired patients at point i,
e The earliest time the vehicle can pick up the

passengers at point i,

*  An upper bound on the riding time of the passengers

at point i,

* A due date at which the passengers at point i have
to arrive at the hospital,

* The boarding time of the patients at point i on the
vehicle, and

* The possible presence of infectious patients among

the passengers at point i.

The vehicle has to visit each pickup point exactly
once, which implies that for each pickup point, neither
the number of the patients nor the number of the
mobility-impaired patients exceeds the corresponding
capacity of the vehicle. Since the goal is to protect
patients from infection, infectious and noninfectious
patients cannot be transported together. Furthermore,
after the vehicle arrives at the hospital with infectious
patients, it has to go back to the depot and undergo a
disinfection procedure before continuing its tour. Finally,
once the vehicle arrives at the hospital all the patients
must get off the vehicle. The goal is to find the optimal
route for a vehicle, which satisfies all of the constraints
and minimizes the total distance run by the vehicle.

4 Mathematical formulation

To formulate the problem as a MILP model, the
problem is first transformed into a Traveling Salesman

Problem (TSP) with additional constraints.

To model the hospital connections, we define an
extended graph G’ = (V’, E’), where each pickup point
i has a corresponding hospital point i + N. The G’ is a
directed graph whose vertices are numbered from 0 to
2N + 1. Vertex 0 is the depot, the vertices labeled as
1, 2, ... N are representing the pickup points. For each
pickup point i there is a corresponding ’hospital point
in G’ denoted by i + N. For each pickup point i patients
at point i have to be transported to the corresponding
hospital point i + N. Thus, the new graph G’ has N
hospital points. In G’, the traveling time and the
distance between points i and j are defined as follows:

e if i is a pickup point or the depot, and j is a pickup
point, then the traveling time and the distance
between points i and j in G’ are the same as in G;

e if{is a pickup point or the depot, and j is a hospital
point (i.e., N + 1 < =j <= 2N + 1), then the traveling
time and the distance between points i and j in G’
are the traveling time and the traveling distance
between i and the hospital in G;

e if i andj are both hospital points, then the traveling
time and the distance between points i and j are 0
in G’

e if i is a hospital point, then the traveling time and
the distance between point i and point 0 (i.e. the
depot) in G’ is the traveling time and the distance
between the hospital and the depot in G;

e if { is a hospital point corresponding to a pickup
point with noninfectious patients and j is a pickup
point, then the traveling time and the distance
between points i and j in G’ are the traveling time
and the distance between the hospital and j in G;

e if { is a hospital point corresponding to a pickup
point with infectious patients and j is a pickup
point, then the distance between i and j in G’ is the
sum of the distance between the hospital and the
depot in G and the distance between the depot and j
in G (i.e., DL.J. =D, + DOJ.);

e finally, if i is a hospital point corresponding to a
pickup point with infectious patients and j is a
pickup point, then the traveling time from i to j in
G’ is set to the sum of the traveling time from the
hospital to the depot in G, the traveling time from
the depot to j in G and the time of the disinfection
procedure at the depot (i.e., T, = T, + T +disinf).

It can be easily seen that a tour in G’ yields a tour in
G. However, a tour in G’ may not yield a feasible solution
of the original problem. To show this, a problem with 4
pickup points is considered. In this case, vertex 0 is the
depot, vertices 1/2/3/4 are the pickup points and vertices
5/6/7/8 are the hospital points in G’. The tour 0-1-6-4-
3-2-5-7-8-0 is not a feasible tour since the patients at a
pickup point 2 are picked up after that vehicle visited
the corresponding hospital point 6. Furthermore, the
tour 0-1-2-3-5-6-4-8-7-0 is not a feasible tour either,
because patients at pickup point 3 are transported to
the hospital but they do not get off the vehicle there (the
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vehicle visits pickup point 3, then it travels to hospital

points 5 and 6, but before reaching hospital point 7 (the

delivery point of pickup point 3) it visits pickup point 4).

So, in order that the solution of the TSP in G’ yields the

optimal solution of the original problem, the model has

to ensure that:

* the constraints associated with the vehicle
(capacities of the vehicle (patients, mobility-
impaired patients) and the passengers (maximum
riding time, earliest pickup time, maximal arrival
time, incompatibility restrictions) are satisfied;

* each pickup point i has to be visited earlier by
the vehicle than the corresponding hospital point
i+N;

e if the vehicle visits the pickup points i, i,, ...i,
before traveling to a hospital point, then the
vehicle has to continue its tour by visiting the
hospital points i, + N, i, + N, ..., i, + N in the
same order.

The following notations are used in the model:

Parameters:

* N: total number of pickup points,

* D, distance between points i and j where 0 < i,
J<2N,

* T, time required to travel from point i to j, where
0<i,j<2N,

e C,: maximum capacity of the vehicle for regular
patients,

* C, maximum capacity of the vehicle for mobility-
impaired patients,

* p;: number of regular patients at pickup point i
1<i<N,

* dp;: number of mobility-impaired patients at pickup
pointi; 1<i <N,

* ip;:indicator of the presence of an infectious patient
at point i.; im. = 1 if infectious, otherwise 0,

e I: maximum allowable travel time for patients at
pointi; 1<i <N,

* a; time required for boarding patients at point i;
1<i<N,

* tr; earliest time patients can be picked up at
pointi; 1<i <N,

* ta; latest allowable arrival time at the hospital
for patients from pointi; 1 <i <N,

* A, opening time of the depot,

* B, closing time of the depot.

Continuous variables:

*  pn;number of regular patients on the vehicle after
visiting point i; 0 < i < 2N,

* dpn;: number of mobility-impaired patients in the
vehicle after visiting point i; 0 < i < 2N,

* m; arrival time of the vehicle at point i; 0 <7 < 2N.

* Integer variables

° u;0<i<2N.

The integer variable u; is an auxiliary variable
used in the Miller—Tucker—Zemlin (MTZ) formulation
to eliminate subtours [18]. It represents the order
or position of vertex i in the route, ensuring that the

solution forms a single continuous tour visiting all nodes
exactly once. For the depot, u, = 0.
Binary variables:
* x,; equals 1 if the vehicle travels from point i to
point j; 0 < i, j < 2N.

5 Constraints of the model

The mathematical formulation of the problem
includes several constraints, which define the structure
of the vehicle’s route and the conditions for transporting
patients. These constraints ensure the feasibility and
efficiency of the solution.

W oxiy=1,0 < j< 2N, (1)

2 oxi=1,0 <i<2N, 2)
uy =1, 3)
2<u; 1<i<2N, (4)
u; < 2N+ 1,1 < i < 2N, (5)
ui+1<u;+2N*(1—x;),1 <i,j<2N, (6)
uit1l<uwun1<i=<N, (7)
Xij = Xj+ni+n, 1 S 4, j < N, ®)
pno=0,N+1<i<2N, 9)
pni=0,N+1<i<2N, (10)
dpno =0 N+1<i<2N, (11)
dpn; = 0,N+1 < i < 2N, (12)
pn: < Cp,1 < i < 2N, (13)
dpn; < Cdp,1 < i < 2N, (14)
pni + pi+2* Cp?‘(xi,j —1) < pnj, (15)
0<i<2N1<j<N,
dpn; + dp;+2* Cgp (x5 — 1) < dpn;, 16)
0<i<2N1<j<N,
mo+ Toi+ M*(x01—1) < my, 0 <7 < N, 17
W+jh+m+4ﬁum—nﬁn% (18)
1<i<N1<j<2N,
mi+ T+ M*(xi; — 1) < m;, (19)

N+1<i<2N1<j<2N,
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tri < mi;1 <7< N, (20)
miry—m; <[ 1 <7=<N, (21)
mi+y < tai,1 < i < N, (22)
Ao = my, (23)
mirn + Tivno < Bo,1 < i < N, (24)
x;=0and x,;, =0, 1 <14 j=< Nta: < trj, (25)
xii = 0,0 <7< 2N, (26)
ui+2=<wu;, 1 <ij=< Nta < trj, (27)
xij = 0 and xj; = 0,1 < 457 < N,ip; + ip;, (28)

o ?Zoxl',j*DiJ‘ - min. (29)

Equations (1) and (2) ensure that each point of
G’ is visited by the vehicle exactly once. Constraints
in Equations (3) to (6) are the subtour elimination
constraints of the MTZ model of the TSP problem.
Constraint in Equation (7) states that each pickup point
is visited earlier by the vehicle than the corresponding
hospital point. Equation (8) states that the vehicle
travels from a pickup point i to a pickup point j if the
vehicle travels from hospital point j + N (corresponding
to a pickup point /) to hospital point i + N (corresponding
to a pickup point 7). This implies that if the vehicle visits
pickup points i, i, ... i,, before going to a hospital point,
the vehicle visits the corresponding hospital points in the
reverse order, i.e., after i, the vehicle visits the hospital
points i, i, | v ... i,,,- Constraints in Equations (9) to
(12) ensure that after leaving the depot or a hospital
point, there is no patient or mobility-impaired patient
in the vehicle. Constraints in Equations (13) and (14)
state that the number of patients or mobility-impaired
patients cannot exceed the capacity of the vehicle.
Constraints in Equations (15) and (16) ensure, that if
the vehicle travels from point i to point j, the number
of patients (mobility-impaired patients) in the vehicle
after leaving point j cannot be less, than the number
of patients (mobility-impaired patients) in the vehicle
after leaving point i plus the number patients (mobility-
impaired patients) at point j. Constraints in Equations
(17) to (19) imply that if the vehicle visits point j after
points i, the arriving time at point j cannot be less than
the arriving time at point i plus the traveling time
from point i to point j plus the boarding time of the
patients (if there are any patient) at point i. Constraint
in Equation (20) states that the vehicle cannot arrive
earlier at a pickup point than the earliest pickup time
of the patients at that pickup point. Inequality in
Equation (21) ensures that the maximal riding time
constraints of the passengers are satisfied. Constraint
in Equation (22) states that all of the patients arrive

at the hospital before their due date. Constraints in
Equations (23) and (24) state that the vehicle starts
and finishes its tour in the opening time of the depot.
Constraints in Equations (25) and (27) imply that if the
latest arrival time at the hospital for patients at pickup
point i is less or equal than the earliest pickup time of
patients at point i, the vehicle can travel neither from
i to j nor from j to i. Constraint in Equation (26) states
that the vehicle has to move from a point to another
point. Constraint in Equation (28) ensures that patients
and infectious patients cannot be transported together.
Finally, Equation (29) states the total distance travelled
by the vehicle has to be minimized.

6 Computational results

To evaluate the performance and scalability of
the proposed MILP model, a series of computational
experiments were conducted using IBM ILOG CPLEX
Optimization Studio (version 22.1.0). The tests were
performed on a personal computer equipped with an
Intel Core i7-7700HQ CPU, 8 GB of RAM, and a 1
TB SSD. Each test run was subject to a maximum
time limit of 3,600 seconds. Except for enabling the
strong branching strategy for variable selection, all
the other solver parameters were kept at their default
settings.

The test instances were generated based on a
real-world urban environment in the city of Sopron,
Hungary. All the travel distances and travel times
between pickups, hospital, and depot locations were
determined using Google Maps data under typical traffic
conditions. The desired arrival times of patients from
each pickup point to the hospital were generated using
random number functions in Microsoft Excel to reflect
realistic time window constraints. This dataset served
as a basis for all computational experiments conducted
in this study.

The experimental design included five test groups,
categorized by the number of pickup points: 10, 15,
20, 25, and 30. For each group, four infection-related
scenarios were examined, varying the proportion of
infectious patients across all pickup locations. These
scenarios ranged from 0% (no infectious patients) to one-
third, two-thirds, and 100% of patients being infectious.

For each scenario, the objective was to minimize
the total distance traveled, while satisfying all the
constraints related to time windows, vehicle capacity,
infection-based compatibility, and mandatory
disinfection procedures. The results are summarized in
Table 1.

Out of the 20 generated test instances, the MILP
model was able to find the optimal solution in all the
cases involving 10, 15, and 20 pickup points, typically
within just a few seconds of computation time. For the
25-pickup-point cases, the optimal solution was obtained
for all four infection scenarios; however, the required
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runtime was much higher than for the 10-20-point
instances, which were solved within seconds. In terms of
computation time, for problems with 25 pickup points,
the mixed scenarios were easier for CPLEX to solve than
the homogeneous ones. The optimal solution was found
in 620.2 seconds when one-third of the patients were
infectious, and in 392 seconds when two-thirds of the
patients were infectious. By contrast, the homogeneous
scenarios took considerably longer: 963.04 seconds with
no infectious patients and 1001.84 seconds when all
patients were infectious.

As expected, the presence of infectious patients
resulted in longer total route distances due to additional
constraints and the requirement to return to the depot
for disinfection. For the 10-pickup point case, the
scenario in which all patients were infectious (100%)
yielded shorter optimal route lengths than those with
mixed groups (e.g., 33% or 66% infectious). For the
25-pickup point case, the scenario in which all patients
were infectious also produced shorter optimal route
lengths than the mixed case with two-thirds infectious
patients. Furthermore, in the 25-pickup point case,
this homogeneous scenario converged faster. This is
not surprising: when all the patients are infectious, the
vehicle must always return to the depot after visiting
the hospital, but it can freely travel between any pickup
points without compatibility restrictions. In contrast,
with mixed groups, transitions are restricted, infectious

Table 1 Experimental results

pickup points can only be followed by another infectious
pickup, and similarly for non-infectious points, which
significantly reduces the number of feasible routing
options, often resulting in longer total distances despite
fewer depot returns.

For the largest test group with 30 pickup points,
different outcomes were observed depending on the
infection composition. In the case without infectious
patients, the program was unable to prove optimality
within the 3,600-second time limit, but it returned a
feasible solution with an objective value of 111.09. At
termination, the best lower bound was 93.60, indicating
that the reported solution may still be improved. This
highlights the substantial computational challenges
associated with large-scale instances, even in the
absence of infection-related constraints.

By contrast, when infectious patients were included,
the problem became unfeasible due to the combined
effect of vehicle capacity restrictions, mandatory
disinfection times, and tight arrival time windows. In
these cases, CPLEX was unable to prove infeasibility
within the 3,600-second time limit.

Table 1 summarizes the computational results
across all generated test instances. Time values are
reported in seconds. Entries marked with ,~” denote
cases where no feasible solution was found, while
,>3600” indicates that the one-hour time limit was
exceeded without proving optimality.

Initial data

Results

Pick up points Infectious Points

Time to find Optimum [s]

Total distance of delivery tasks [km]

10 0 1.45 51.9
10 3 1.51 70.3
10 6 1.47 71.1
10 10 1.57 68.9
15 0 1.76 74.4
15 5 1.56 83.2
15 10 1.50 92.2
15 15 1.67 96.1
20 0 3.16 93.3
20 7 4.34 96.2
20 14 8.11 102.1
20 20 6.37 109.1
25 963.04 104.6
25 620.20 118.35
25 16 392 135.6
25 25 1001.84 125.6
30 0 >3600 111.09
(not proven opt.)
30 10 (n/f) -
30 20 (n/f) -
30 30 (n/f) -
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7 Conclusion

In this paper a mathematical optimization
model for patient transportation that explicitly
incorporates infection control constraints is presented.
Building on the classical Dial-a-Ride Problem (DARP)
framework, an existing MILP formulation is extended
by introducing two critical real-world features:
(1) compatibility constraints that prohibit the joint
transport of infectious and noninfectious patients,
and (2) mandatory vehicle disinfection following the
transport of infectious individuals.

The model accommodates a wide range of
operational constraints, including passenger-specific
pickup and drop-off time windows, maximum allowable
ride durations, and vehicle capacity limits differentiated
by passenger type (e.g., standard vs. mobility-impaired).
To solve the problem, a modified MTZ-based formulation
was employed and used IBM ILOG CPLEX to evaluate
the model’s performance on across multiple scenarios
involving varying numbers of pickup locations and
different proportions of infectious patients.

The obtained computational results demonstrate
that incorporating infection control constraints
significantly increases the complexity of route planning,
particularly in mixed-infection scenarios. At 25 pickup
points, homogeneous scenarios, where either all or none
of the patients are infectious, converged slower than
mixed scenarios, while for the smaller instances (10, 15,
and 20 points) every case was solved within seconds,
and for 30 points no feasible solution was returned
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within the time limit. This suggests that compatibility
constraints, while restrictive, can sometimes reduce the
solution space in a way that accelerates optimization.
Furthermore, the experimental results highlight the
limitations of a single-vehicle model when scaling
beyond 25 pickup points, thereby motivating the need
for more scalable, multivehicle approaches.

The proposed model contributes not only to the
theoretical advancement of compatibility-aware
DARP formulations but provides practical insights
for designing safe, efficient, and regulation-compliant
patient transportation systems in urban healthcare
settings, as well.

Future work should focus on extending the model
to a multivehicle setting, incorporating cost-based
objectives, including fuel consumption, labor costs, and
addressing return-trip scenarios for patients.

Acknowledgment

The authors received no financial support for the
research, authorship and/or publication of this article.
Conflicts of interest

The authors declare that they have no known
competing financial interests or personal relationships

that could have appeared to influence the work reported
in this paper.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

DAGANZO, C. F., OUYANG, Y. A general model of demand-responsive transportation services: from taxi to
ridesharing to dial-a-ride. Transportation Research Part B: Methodological [online]. 2019, 126, p. 213-224.
ISSN 0191-2615, eISSN 1879-2367. Available from: https://doi.org/10.1016/j.trb.2019.06.001

TOTH, M., HAJBA, T., HORVATH, A. MILP models of a patient transportation problem. Central European
Journal of Operations Research [online]. 2024, 32(4), p. 903-922. ISSN 1435-246X, eISSN 1613-9178.
Available from: https://doi.org/10.1007/s10100-023-00902-z

TOTH, M., HAJBA, T., HORVATH, A. Solving a dynamic route planning problem in the area of patient
transport with mixed integer linear programming. In: 9th VOCAL Optimization Conference: Advanced
Algorithms: proceedings. 2022. ISBN 978-615-01-5987-4, p. 60-67.

CORDEAU, J.-F., LAPORTE, G. The dial-a-ride problem: models and algorithms. Annals of
Operations Research [online]. 2007, 153, p. 29-46. ISSN 0254-5330, eISSN 1572-9338. Available from:
https://doi.org/10.1007/s10479-007-0170-8

BONGIOVANNI, C., KASPI, M., GEROLIMINIS, N. The electric autonomous dial-a-ride problem.
Transportation Research Part B: Methodological [online]. 2019, 122, p. 436-456. ISSN 0191-2615,
eISSN 1879-2367. Available from: https://doi.org/10.1016/j.trb.2019.03.004

AGRA, A., CHRISTIANSEN, M., WOLSEY, L. Improved models for a single vehicle continuous-time
inventory routing problem with pickups and deliveries. European Journal of Operational Research [online].
2022, 297(1), p. 164-179. ISSN 0377-2217, eISSN 1872-6860. Available from: https:/doi.org/10.1016/j.
€jor.2021.04.027

LIM, A., ZHANG, Z., QIN, H. Pickup and delivery service with manpower planning in Hong Kong public
hospitals. Transportation Science [online]. 2017, 51(2), p. 688-705. ISSN 0041-1655, eISSN 1526-5447.
Available from: https://doi.org/10.1287/trsc.2015.0611

VOLUME 28

COMMUNICATIONS 1/2026



E20 TOTH et al.

[8] LUO, Z., LIU, M., LIM, A. A two-phase branch-and-price-and-cut for a dial-a-ride problem in patient
transportation. Transportation Science [online]. 2019, 53(1), p. 113-130. ISSN 0041-1655, eISSN 1526-5447.
Available from: https://doi.org/10.1287/trsc.2017.0772

[91 ARMBRUST, P., HUNGERLANDER, P., MAIER, K., PACHATZ, V. Case study of dial-a-ride problems
arising in Austrian rural regions. Transportation Research Procedia [online]. 2022, 62, p. 197-204.
Available from: https://doi.org/10.1016/j.trpro.2022.02.025

[10] MOLENBRUCH, Y., BRAEKERS, K., CARIS, A., VANDEN BERGHE. G. Multi-directional local search
for a bi-objective dial-a-ride problem in patient transportation. Computers and Operations Research
[online]. 2017, 77, p. 58-71. ISSN 0305-0548, eISSN 1873-765X. Available from: https://doi.org/10.1016/;.
¢0r.2016.07.020

[11] SCHULZ, A., PFEIFFER, CH. A branch-and-cut algorithm for the dial-a-ride problem with incompatible
customer types. Transportation Research Part E: Logistics and Transportation Review [online]. 2024, 181,
103394. ISSN 1366-5545, eISSN 1878-5794. Available from: https:/doi.org/10.1016/j.tre.2023.103394

[12] LOKHANDWALA, M., CAI, H. Understanding the impact of heterogeneous rider preferences on a
shared autonomous vehicle system. Transportation Research Part F: Traffic Psychology and Behaviour
[online]. 2020, 75, p. 120-133. ISSN 1369-8478, eISSN 1873-5517. Available from: https:/doi.org/10.1016/;.
trf.2020.09.017

[13] COLOMBI, M., CORBERAN, A., MANSINI, R., PLANA, 1., SANCHIS, J. M. The directed profitable rural
postman problem with incompatibility constraints. European Journal of Operational Research [online].
2017, 261(2), p. 549-562. ISSN 0377-2217, eISSN 1872-6860. Available from: https://doi.org/10.1016/.
€jor.2017.02.002

[14] BERNARDINO, R., PAIAS, A. The family traveling salesman problem with incompatibility constraints.
Networks [online]. 2022, 79(1), p. 47-82. ISSN 0028-3045, eISSN 1097-0037. Available from:
https://doi.org/10.1002%2Fnet.22036

[15] MANERBA, D., MANSINI, R. A branch-and-cut algorithm for the multi-vehicle traveling purchaser
problem with pairwise incompatibility constraints. Networks [online]. 2015, 65(2), p. 139-154.
ISSN 0028-3045, eISSN 1097-0037. Available from: https:/doi.org/10.1002/net.21588

[16] GENDREAU, M., MANERBA, D., MANSINI, R. The multi-vehicle traveling purchaser problem with
pairwise incompatibility constraints and unitary demands: a branch-and-price approach. European
Journal of Operational Research [online]. 2016, 248(1), p. 59-71. ISSN 0377-2217, eISSN 1872-6860.
Available from: https:/doi.org/10.1016/j.ejor.2015.06.073

[17] FACTOROVICH, P., MENDEZ-DIAZ, 1., ZABALA, P. Pickup and delivery problem with incompatibility
constraints. Computers and Operations Research [online]. 2020, 113, 104805. ISSN 0305-0548,
eISSN 1873-765X. Available from: https://doi.org/10.1016/j.cor.2019.104805

[18] MILLER, C. E., TUCKER, A. W., ZEMLIN, R. A. Integer programming formulation of traveling salesman
problems. Journal of the ACM (JACM) [online]. 1960, 7(4), p. 326-329. ISSN 0004-5411, eISSN 1557-735X.
Available from: https:/doi.org/10.1145/321043.321046

COMMUNICATIONS 1/2026 VOLUME 28





