
C10 	 E lec t r ica l Engineer ing in T ranspor t 	 O R I G I N A L R E S E A R C H A R T I C L E

© 2 0 2 6 T H E A U T H O R S 	 C O M M U N I C A T I O N S 2 8 (1) C 1 0 - C 2 1

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits
use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted
which does not comply with these terms.

CLOUD-BASED MODULAR SYSTEM FOR ACQUISITION AND
VISUALIZATION OF OCO-2 REMOTELY SENSED CO2 DATA
Maroš Valášek1,*, Roman Budjač2, Martin Hanzely3, Neven Vrček4

1Department of Control and Information Systems, Faculty of Electrical Engineering and Information Technology,
University of Zilina, Zilina, Slovakia

2Research Centre, University of Zilina, Zilina, Slovakia
3Travelco s.r.o., Oscadnica, Slovakia
4Department of Information Systems Development, University Zagreb, Varazdin, Croatia

*E-mail of corresponding author: maros.valasek@feit.uniza.sk

Maros Valasek 0009-0006-4781-4628, 	 Roman Budjac 0000-0001-6840-1706,
Martin Hanzely 0009-0002-5383-7288,	 Neven Vrcek 0000-0002-4037-1522

Resume
In this paper is presented a cloud-based framework for automated acquisition
and visualization of Orbiting Carbon Observatory-2 (OCO-2) satellite
CO2 data. The system employs an ETL pipeline with OPeNDAP protocol
for selective data retrieval, reducing network overhead while processing
L2 Standard and L2 Lite FP products. Built on Amazon Web Services
(AWS) infrastructure, using Python (Pandas, Dash, Plotly) and Docker
orchestration, the modular architecture implements dependency injection
for runtime flexibility. The deployed system achieves daily automated
ingestion with 2.25 km × 1.29 km spatial resolution, enabling the real-time
monitoring through interactive web visualization. The system is designed
as a foundation for future analytical research, providing ready integration
points for machine learning models to perform advanced CO2 pattern
recognition and predictive analysis.

Article info
Received 14 November 2025
Accepted 5 December 2025
Online 16 January 2026

Keywords:
CO2

data acquisition
remote sensing
machine learning

Available online: https://doi.org/10.26552/com.C.2026.013
ISSN 1335-4205 (print version)
ISSN 2585-7878 (online version)

diverse observational platforms, including ground-based
in-situ sensors and atmospheric models, to enhance the
accuracy and robustness of CO₂ emission estimates [7].
Most high-quality observations are concentrated in the
Northern Hemisphere, especially between 30°N and
70°N, where the industrial activity is most intensive.
In the future, a more uniform global coverage is
essential for a comprehensive understanding of carbon
cycle dynamics and for supporting climate mitigation
strategies [8]. This uneven coverage creates substantial
data gaps, especially in polar regions and over the
oceans, which play a crucial role in carbon sequestration.
This fact limits our understanding of global carbon cycle
dynamics. To address these limitations, a scalable cloud-
based data storage and visualization tool is imperative
for managing the multi-type geospatial data generated
from satellite-derived CO2 flux measurements [9].

Transportation represents one of the most significant
sources of anthropogenic CO2 emissions, contributing
nearly a quarter of global energy-related greenhouse
gases. Freight road activity alone accounts for a

1	 Introduction

The current level of CO2 in the atmosphere has
increased in the last decades significantly, necessitating
advanced monitoring techniques such as those offered by
satellite-based remote sensing [1]. These platforms offer
a unique vantage point for comprehensive atmospheric
observations, enabling the precise quantification of
greenhouse gas concentrations and their spatial and
temporal variations [2]. This approach is critical for
identifying emission hotspots, such as large urban
centers, power plants, and industrial facilities, which
are major contributors to anthropogenic CO₂ emissions
[3-4]. However measurements are not consistent and not
all localities have the same measurement fidelity, with
current methods facing challenges in distinguishing
anthropogenic CO₂ signals from background
concentrations and limitations in spatio-temporal
resolution [5]. Furthermore, the distribution of CO₂
satellite measurements exhibits significant latitudinal
bias [6]. This necessitates the integration of data from

https://orcid.org/0009-0006-4781-4628
https://orcid.org/0000-0001-6840-1706
https://orcid.org/0009-0002-5383-7288
https://orcid.org/0000-0002-4037-1522
https://www.zotero.org/google-docs/?Pc7Q25
https://www.zotero.org/google-docs/?aF1r2G
https://www.zotero.org/google-docs/?Zjziu3
https://www.zotero.org/google-docs/?cOwhdu
https://www.zotero.org/google-docs/?y34kxI
https://www.zotero.org/google-docs/?vX3iFI
https://www.zotero.org/google-docs/?7UgHXJ
https://www.zotero.org/google-docs/?i19JmB

C L O U D - B A S E D M O D U L A R S Y S T E M F O R A C Q U I S I T I O N A N D V I S U A L I Z A T I O N O F O C O - 2 R E M O T E L Y . . . 	 C11

V O L U M E 2 8 	 C O M M U N I C A T I O N S 1 / 2 0 2 6

structured data processing architectures to manage the
massive volumes of geospatial and satellite information
generated by modern EO missions. Romero et al. [17]
introduced an ETL-based framework for integrating
remote sensing data from multiple satellites,
demonstrating a modular architecture that enables
extraction, transformation, and loading of heterogeneous
data formats (e.g., NetCDF, HDF, GeoTIFF) into unified
analytical repositories. Implemented in Python, and
compatible with workflow systems, such as Apache
Airflow and Dagster, their design facilitates flexible and
scalable data fusion across instruments like GOES-16
and CloudSat, though its focus remains primarily on
cloud profiling and radiometric data.

Similarly, Boudriki Semlali and El Amrani
[18] proposed a hybrid ETL and stream-processing
architecture combining the SAT-ETL-Integrator
for satellite data preprocessing with the SAT-CEP-
Monitor for real-time analysis based on Complex Event
Processing (CEP). Their system integrates multisource
datasets from NASA, NOAA, and ESA satellites with
ground-based observations, performing multi-stage ETL
operations and CEP aggregation to compute air-quality
indices in near-real time. The approach demonstrated
high processing efficiency and strong agreement with
ground-based data (r = 0.75), underscoring the potential
of ETL + CEP frameworks for environmental satellite
data analytics.

While these works advance data integration and real-
time processing, existing architectures remain limited in
handling satellite-based CO2 column measurements.
For example, Boussaada et al. [19] describe a multilayer
system architecture comprising Data Acquisition, Data
Processing and Communication, Data Storage, and
Application Layer, that primarily targets ground-based
IoT sensors and citizen monitoring.

In contrast, this new approach extends the
architectural model with dedicated modules for satellite
CO2 data, including an ETL pipeline, georeferencing,
spatio-temporal interpolation, and integration with
emission and meteorological models. This design
establishes a systematic preprocessing layer for satellite-
derived CO2 datasets, addressing a critical gap in
current EO data processing frameworks.

3	 Materials and methods

In this section, an innovative and methodological
framework for the systematic acquisition, processing,
and interactive spreading of the large-scale atmospheric
carbon dioxide (CO2) data was introduced. Conventional
approaches often face challenges related to voluminous
data transfer, inflexible processing pipelines, and
the presentation of findings in static, non-interactive
formats. The system presented in this work addresses
these limitations by combining a selective data-access
mechanism with a modular, high-performance processing

substantial portion of these emissions, approximately
29.4% of all the transport-related carbon output [10].
Accurate monitoring of CO2 in transport corridors,
urban traffic zones, and major logistic hubs is therefore
essential for assessing the environmental impact of
mobility systems and evaluating the effectiveness of
decarbonization policies. Leveraging modern cloud-
based solutions can overcome the complex demands
of air quality management and policy monitoring by
providing advanced tools for environmental monitoring
and policy formulation [11]. Satellite-based CO2

measurements provide valuable large-scale insights
into emission patterns from road, air, and maritime
transport, complementing ground-based inventories
that often lack spatial coverage or temporal consistency.
Specifically, satellites like the Orbiting Carbon
Observatory-2 offer high-resolution spatiotemporal data
of CO₂ concentrations [12].

Global energy consumption is strongly coupled
with CO₂ emissions: as the number of IoT devices,
deployed for CO₂ monitoring, continues to increase, the
associated energy demand likewise increases and is
still largely met by fossil-based generation within the
current energy mix. These trends motivate the use of
hybrid energy-harvesting techniques to enable large-
scale sensor networks to operate more sustainably,
without further amplifying the carbon footprint of the
monitoring infrastructure [13].

In this paper, the development of a cloud-based
system, specifically designed for the acquisition and
transmission of carbon dioxide data from satellite
sources to a custom visualization platform, is detailed.
This system leverages Amazon Web Services for its
scalable and flexible infrastructure, enabling the
robust data processing and monitoring capabilities
[14]. The architecture integrates satellite-derived CO2

measurements, facilitating their secure streaming and
storage within the AWS ecosystem [15].

2	 Related works

The cloud-based Earth Observation (EO) data
processing platforms have evolved significantly to
address the challenges of managing and analyzing
large-scale satellite datasets. The openEO initiative
represents a key advancement in this field, establishing
an open API standard that abstracts away infrastructure
complexities. Developed within the H2020 project (2017-
2020) [16], openEO provides a unified framework for
accessing diverse satellite data sources through high-
level abstractions that treat image collections as data
cubes, enabling scientists to focus on analysis rather than
data handling. The Application Programming Interface
(API) supports multiple client libraries (Python, R,
JavaScript, QGIS) and integrates with existing image
analysis services.

Recent studies highlight the growing need for

https://www.zotero.org/google-docs/?wIzvyL
https://www.zotero.org/google-docs/?H48sW8
https://www.zotero.org/google-docs/?Z7G5vw
https://www.zotero.org/google-docs/?Nr8hWc
https://www.zotero.org/google-docs/?jBdQm6
https://www.zotero.org/google-docs/?5NwAqF
https://www.zotero.org/google-docs/?PYgnz7
https://www.zotero.org/google-docs/?AidIrU

C12 	 V A L A S E K e t a l .

C O M M U N I C A T I O N S 1 / 2 0 2 6 	 V O L U M E 2 8

process of obtaining the addresses of the required data
files from the THREDDS catalog.

The Requests library is employed to access the
data repository, as it provides essential authentication
support and significantly simplifies interface for working
with HTTP protocol compared to Python’s standard
library. The retrieved data files must subsequently
be converted to DataFrame objects implemented by
the Pandas library. A DataFrame is a highly efficient
data structure specifically designed for tabular data,
rigorously supports critical operations such as filtering,
such as filtering, aggregations and statistical operations.
Pandas itself is a high-level data manipulation library,
primarily engineered for advanced data analysis tasks. Its
core components are implemented in the C programming
language, which ensures high performance, while
maintaining the simplicity and flexibility of Python.

After the processing and analysis, the obtained
and transformed data need to be stored in a persistent
storage system. Several storage options were designed
for the needs of the application, such as CSV file stored
on a local disk or Parquet file stored on a network-
accessible data repository.

The first option, a CSV file on the local disk, is
primarily intended for local testing, as CSV files are
text based and human readable without requiring
specialized software. In contrast, the Parquet files are
binary and not directly readable without required tools,
however, they provide higher efficiency for reading and
writing operations and require less disk space. They are,
therefore, more suitable for cloud storage environments.

For the data processing, the Extract, Transform,
Load (ETL) process was adopted. This process consists
of three main phases: extraction, transformation, and
loading of the data.

The extraction phase involves acquiring data from
one or more internal or external sources that may
contain structured or unstructured data. It includes
the initial validation of received data, ensuring that
they are in the correct format and structure. During
the transformation phase, various functions and rule
sets are applied to the data, including filtering, filling in
missing values, aggregation, and merging. The loading
phase refers to storing the processed data in internal
storage, which may include a file system, database, or
data warehouse. All acquired data are stored to enable
subsequent analysis.

Within this process, a function for analyzing the
newly acquired and cleaned data is also executed.
During this analysis phase, various aggregations
and computations of supplementary information
are performed, operations that would be inefficient
to execute during each visualization. The analyzed
data are likewise stored in the internal storage for
further use. In addition, the processed data are
continuously supplied to external machine learning
model using the provider interface for further analysis
and predictions.

pipeline and a dynamic, web-based visualization
interface. The research led up to the instantiation of this
framework as a web application for visualizing global CO2
concentrations derived from satellite measurements,
thereby demonstrating its efficacy and utility.

The main functions of the data module are the
acquisition, processing, analysis, and storage of data
from satellite measuring stations. One of the first
tasks, therefore, was to find a suitable data source
and secure programmatic access to the storage. We
designated the Orbiting Carbon Observatory-2 (OCO-2)
satellite measuring station as the primary data source.
The measured data is stored in a publicly accessible
repository managed by the Goddard Earth Sciences
Data and Information Services Center (GES DISC) at
NASA Goddard Space Flight Center. The data available
in the storage facility are at various levels of processing,
typically 0 to 4. The proposed application works with
level 2 data, which are mapped to the relevant latitude
and altitude and contain error indicators that specify
whether the data are suitable for use. Two types of
data products are the most suitable for processing:
L2 Standard and L2 Lite FP. The L2 Standard data
product is usually available one to two days after the
measurement itself, but only for the current calendar
year. The L2 Lite FP represents condensed data files
that have undergone more thorough correction. Those
files have been available approximately one month
after the measurement itself since 2014. In this case,
one data file represents one day, which allows for
easier processing compared to L2 Standard files. In the
proposed application, L2 Standard data was selected
for daily downloads of new data and L2 Lite FP for
downloading historical data.

There are several ways to access data. For the
purposes of the proposed application, the OPeNDAP
(Open-source Project for a Network Data Access Protocol)
protocol was chosen. This is an open protocol for
accessing data files based on http technology [20]. This
protocol allows only selected variables of data files to be
downloaded in NetCDF format, which makes it possible
to work with a much smaller volume of data, resulting
in less network load and faster processing. On the data
provider side, the OPeNDAP protocol uses Hyrax server
software with support for THREDDS catalogs [21]. The
THREDDS catalogs are XML files that organize and
describe data files and folders in the repository, making
it possible to navigate the repository folders and find the
desired files by date [22]. The storage has a root folder
with a fixed address. The root folder, like all others,
contains a catalog with a list of files, their address for
access via the OPeNDAP protocol, and a list of nested
folders. Access to data files depends on the selected type
of data product, L2 Standard or L2 Lite FP. The folder
structure and file naming are different in both cases.
The program must be designed to work with both cases.
The application must also include a function that works
with these catalogs. The following flowchart shows the

https://www.zotero.org/google-docs/?bpNq1h
https://www.zotero.org/google-docs/?muKhiY
https://www.zotero.org/google-docs/?RRcCot

C L O U D - B A S E D M O D U L A R S Y S T E M F O R A C Q U I S I T I O N A N D V I S U A L I Z A T I O N O F O C O - 2 R E M O T E L Y . . . 	 C13

V O L U M E 2 8 	 C O M M U N I C A T I O N S 1 / 2 0 2 6

BaseExtractor class, operating without access to real
online data. It returns a DataFrame object supplied
through the constructor and is used exclusively for
automated testing purposes. This allows testing of
the ETL Pipeline logic with controlled input data and
without the need for an internet connection.

The abstract class BaseOpendapExtractor overrides
the constructor of BaseExtractor by introducing
a mandatory parameter, opendap_client, of type
OpendapClient. The OpendapClient class defines and
implements a simple interface for communication with
a server via the OPeNDAP protocol and for interaction
with the THREDDS catalog.

The classes OpendapExtractor_L2Standard and
OpendapExtractor_L2LiteFP implement access to the
actual data repository, managing authentication against
the storage system and searching for files based on the
specified date range.

The abstract class BaseLoader provides the
fundamental interface for the data storage. The method
save_dataframe accepts a parameter of type DataFrame
and a desired filename, which it saves to persistent
storage. Conversely, the method retrieve_dataframe
accepts the name of the file to be opened and returns
a DataFrame object. The retrieve_dataframe method
is also utilized in the design of the application’s
visualization module. The implementation of the data
storage operations is encapsulated within individual
concrete subclasses.

The TestLoader class represents the implementation
of the abstract BaseLoader class, operating without
the use of a database system or file storage. It works
exclusively with a DataFrame object in system memory,

Figure 1 illustrates the main components and
interactions within the ETL workflow. The central ETL
process receives user-defined inputs through the task
scheduler and system administrator, which trigger
extraction, transformation, and loading operations. The
Extract module retrieves raw data from external storage,
while the Transform module performs preprocessing and
normalization of the extracted datasets. The processed
data is then passed to the Data analysis component,
which is connected to the machine learning model and
subsequently stored in the database through the Load
module. Feedback on the task completion is returned
to the system administrator, ensuring the controlled
execution and monitoring of the ETL pipeline.

Figure 2 illustrates the class diagram of the
application’s data module. The entire ETL process
is managed by the ETL Pipeline class through the
dependencies extract_strategy and load_strategy,
which are provided to the ETL Pipeline object via
its constructor, depending on the configuration
of the runtime environment. The data module was
designed in accordance with the principles of object-
oriented programming: abstraction, encapsulation,
polymorphism, and inheritance.

The abstract class BaseExtractor provides a basic
interface for the data acquisition. The method extract_
date_range accepts a date range as its parameter
specifying the period for which data should be
downloaded, and returns a pair consisting of the date and
a DataFrame object. The actual implementation of data
retrieval is encapsulated within concrete subclasses.

The TestExtractor class represents the
straightforward implementation of the abstract

Figure 1 Data Flow Architecture of the ETL Pipeline with integrated Data Analysis Module

C14 	 V A L A S E K e t a l .

C O M M U N I C A T I O N S 1 / 2 0 2 6 	 V O L U M E 2 8

supports file versioning. When a file is overwritten,
its previous version is preserved and can be restored
in cases such as data corruption. Therefore, the
implementation of S3ParquetLoader also requires an
interface for accessing the S3 storage.

The ETL Pipeline class itself provides a minimal
interface, exposing only the invoke function, which
initiates the process and manages the provided concrete
dependencies. The design follows the Dependency
Injection pattern, in which an object receives its
dependencies externally rather than creating them

allowing testing of the ETLPipeline logic without the
overhead of time-consuming data storage operations.

The LocalCSVLoader class stores the provides
DataFrame object as a CSV file on disk and retrieves
data only from that file. It is primarily intended for local
testing of the application.

The S3ParquetLoader class stores the provides
DataFrame object as a Parquet file in a data repository.
The design assumes the use of Amazon Web Services
(AWS) S3 storage, as the application is intended to be
deployed in the AWS environment. This storage system

Figure 2 Class diagram of the data module for application

Figure 3 Class diagram of data module for application with ETL Pipeline

C L O U D - B A S E D M O D U L A R S Y S T E M F O R A C Q U I S I T I O N A N D V I S U A L I Z A T I O N O F O C O - 2 R E M O T E L Y . . . 	 C15

V O L U M E 2 8 	 C O M M U N I C A T I O N S 1 / 2 0 2 6

for working with graphical visualizations and offer
seamless mutual integration.

An application built using the Dash library
functions as a lightweight web interface that listens
on a predefined port, processes the HTTP requests,
and returns responses. The user interface (UI) is
defined using Python code. The library includes an html
module, whose classes are translated at runtime into
the corresponding HTML elements. Objects of these
html classes are inserted into the application’s layout
attribute along with their properties. Based on this
declarative structure, the corresponding HTML user
interface is generated automatically.

The library provides a variety of interactive
components, such as buttons and forms, which can be
utilized in the application’s design. Interaction with
these elements is linked to specific application functions
through unique element identifiers. Such a function is
referred to as a callback and governs the modification
of one or more HTML elements in response to user
interaction - for example, re-rendering graphs with
updated data when the user changes the selected date
range. The design of these callback functions should
follow the functional programming paradigm, meaning
that they should not modify the internal state of the
application but instead return output based only on
input parameters.

The visualization components of the user interface
are rendered using the Plotly library, which supports
a wide range of chart types, including bar charts, line
charts, maps, and correlation diagrams. Plotly functions
accept DataFrame objects as their primary data source,
allowing direct integration with the BaseLoader objects
introduced in the previous section for data access.

Figure 4 presents a conceptual data flow diagram,
illustrating the user interaction with the graphic user
interface and sequential data processing components.
The callback function handler accepts the input and
calls the loader object for updated data. Loader object
plays an intermediary role between the callback handler
and a data repository. Such architecture allows for

internally. Injecting dependencies that implement
a common interface into the controller class allows
the replacement of components at runtime without
modifying the controller’s source code. The ETL process
in the application can be initiated from two sources:
the Command-Line Interface (CLI) or a task scheduler.
The CLI interface is managed by the Typer library,
which simplifies the definition and parsing of command
parameters. This allows for selection of a specific subclass
of type BaseExtractor at the moment the command is
executed. The function called by the command invoke-
etl is defined in Figure 3. The pipeline_factory function
supplements the required dependencies and returns an
ETLPipeline object ready for execution. The example
code below illustrates the invoke_etl function, which is
triggered by the invoke-etl command within the CLI
environment. Besides specifying the input dates, the
user can also select the class used for data extraction.

Another method of triggering the ETL process is
through a task scheduler. For this purpose, the Celery
library is deployed, which enables the execution of
scheduled and background tasks within the application.
The configuration file defines the schedule read by
Celery at startup. The schedule includes a single task,
daily_etl_task_L2_Standard, which runs daily at 06:00,
along with the definition of the task itself. The provided
code snippet represents the Celery configuration,
including the setup of periodic task scheduling.

3.1	 Visualization module design

The main function of the visualization module is to
display the results of data analysis to the user in the
form of a web interface. Consequently, it is necessary to
select appropriate software libraries for implementing
an HTTP server and for generating and rendering
various types of plots. For this purpose, the Dash and
Plotly libraries were chosen. Both are open-source
software libraries developed by Plotly Technologies Inc.
and are freely available. They provide a simple interface

Figure 4 Class diagram of data module for application with ETL Pipeline

C16 	 V A L A S E K e t a l .

C O M M U N I C A T I O N S 1 / 2 0 2 6 	 V O L U M E 2 8

accessed through THREDDS Catalogue and OPENDAP
NetCDF4 services.

The core of the architecture is Celery, a distributed
task queue that operates as a worker to handle
scheduled tasks for the data processing module. Data
is stored in AWS S3 cloud storage and structured
using Apache Parquet for optimal performance and
accessibility. The Plotly App serves as the user interface,
facilitating initial data preload and user interactions.
Celery‘s callback functions are specifically used to
respond to user interface requests, enabling seamless
communication between the data processing module
and the user interface. Redis is employed for caching
and message brokering, enhancing system performance
and responsiveness. Additionally, a machine learning
service provider is integrated to supply the advanced
analytics and enhance data analysis capabilities. This
architecture emphasizes the seamless flow of data
from external sources through processing and storage
to user interaction, leveraging the robust open-source
technologies to support environmental data processing
and distribution.

4	 Results

After the deployment, the application operated
as expected. It downloaded the new data daily from
the L2 Standard data product, provided that the
data were available. If no data were accessible, the
application reported an error, which was automatically
communicated to the system administrator via the Sentry
monitoring service. For historical data dating back to
the beginning of 2023, the L2 Lite FP data product was
utilized. Although those data were uploaded to storage
with a monthly delay, they were of higher quality and
underwent more rigorous validation procedures.

various persistent storage implementations. Loader
then fulfills the query and passes the data to the
callback handler, which then updates the graphic user
interface accordingly.

A function that responds to user interaction must
repeatedly establish connections to the database
or the local file system and query large volumes of
data. Consequently, situations may arise in which the
response time exceeds the default timeout settings of the
web server or the user’s browser. Furthermore, a large
number of long running calls could potentially overload
all threads of the web application process. To mitigate
these issues, background execution is employed.

Upon user interaction, the interactive input elements
are temporarily disabled, and the execution request is
placed into a dedicated task queue. Once the task is
completed, the relevant element of the user interface is
updated accordingly. The task queue management and
sequential execution of commands are handled by the
Celery library, which also serves as a task scheduler in
the application’s data module.

Figure 5 presents the class diagram of the
application’s visualization module. The abstract class
BaseLoader, similar to its counterpart in the data
module, provides an interface for loading data from a
database or local disk. A specific implementation object
is injected as a dependency into the update_graph
function. This dependency injection design allows for
the update_graph function logic to be tested without
requiring an active database connection. As in the data
module, a Settings class is also used and injected as a
dependency during the application’s startup.

Figure 6 displays a system architecture diagram
with the technologies used to support the system. The
application integrates external data sources from NASA
GES DISC, including the OCO-2 L2 LITE FP and
OCO-2 L2 STANDARD datasets. Those datasets are

Figure 5 Class diagram for the visualization module of application

C L O U D - B A S E D M O D U L A R S Y S T E M F O R A C Q U I S I T I O N A N D V I S U A L I Z A T I O N O F O C O - 2 R E M O T E L Y . . . 	 C17

V O L U M E 2 8 	 C O M M U N I C A T I O N S 1 / 2 0 2 6

global trends or for predictive modeling; however, such
analyses are typically conducted in conjunction with
meteorological and other complementary models.

Figure 7 illustrates the cloud-based deployment
of the ETL and data processing services using Docker
Compose. Incoming HTTP requests are routed through
an Nginx reverse proxy running on the host operating
system. The proxy forwards the requests to a Gunicorn
application server that handles multiple worker instances
on port 8050. The background data processing tasks are
managed by a Celery service (worker and scheduler),
which interacts with two supporting components: All
the components run as Docker containers orchestrated
within a single server environment, ensuring
scalability, modularity, and fault isolation across
services.

The examples in Figures 8 and 9 show the user
interface of application for the two different user-

The spatial resolution of the satellite sensors is
2.25 km × 1.29 km. Consequently, the acquired data can
also be used for analyses of smaller geographic regions,
provided that sufficient satellite coverage is available.
A preliminary analysis of the dataset indicates that
the satellite-based measurements closely follow the
trends observed in ground-based monitoring stations,
including seasonal variations and hemispheric extremes.
Furthermore, the dataset enables the observation of
global trends and anomalies, as well as the identification
of sources, sink regions, and regional variations in
atmospheric carbon dioxide concentration throughout
the year.

The use of satellite data has also made it possible to
isolate the CO2 concentration values over the territory
of Slovakia, a region where no open access ground-based
measurement stations are available. These data can be
employed for the more complex analyses of regional and

Figure 6 The class diagram for GUI module of application

Figure 7 System architecture of the container-based deployment environment

C18 	 V A L A S E K e t a l .

C O M M U N I C A T I O N S 1 / 2 0 2 6 	 V O L U M E 2 8

spatial structure of the XCO2 field and highlights broad
geographic variations.

The right-hand panel shows the corresponding
global map projection for the same month and uses the
identical color scale and marker values, emphasizing the
spatial variability and regional patterns for the same
period. Regions without colored symbols correspond
to areas where no OCO-2 satellite measurements
were available for the selected month. A common
color scale (ppm) is applied to both panels to ensure
consistent comparison of concentration levels. When
considered together, the 3D scatter plots and global
map projections provide complementary perspectives
on the distribution and magnitude of observed XCO₂.
Both panels incorporate interactive functionality that
enables detailed exploration of localized spatial patterns.
This integrated visualization framework provides a
compact, interactive environment for data exploration,
anomaly detection, and trend analysis, without the

selected datasets. For each selection, the visual outputs
are updated dynamically to the chosen time period,
enabling direct comparison of spatial and temporal
variations in atmospheric CO2 using both the 3D scatter
plots and global map projections.

The left-hand panels of Figures 8 and 9 present the
3D scatter plots of mean XCO2, the column-averaged
dry-air mole fraction of atmospheric CO2, as a function of
latitude (x-axis) and longitude (y-axis) for January 2024
and October 2023 respectively. Each marker corresponds
to the average of XCO2 value per degree of latitude
and one degree of longitude. Marker color follows
the adjacent color bar (ppm) and encodes the same
XCO2values shown on the vertical axis - warmer colors
indicate higher concentrations. Since the plot projects
many closely spaced retrievals, regional gradients are
best read by following the color and height trends
across latitude/longitude ranges rather than individual
markers. This representation effectively captures the

Figure 8 Graph and visualization for average monthly values - January 2024

Figure 9 Graph and visualization for average monthly values - October 2023

C L O U D - B A S E D M O D U L A R S Y S T E M F O R A C Q U I S I T I O N A N D V I S U A L I Z A T I O N O F O C O - 2 R E M O T E L Y . . . 	 C19

V O L U M E 2 8 	 C O M M U N I C A T I O N S 1 / 2 0 2 6

web interface for exploring global and regional XCO2
distributions, including areas without in-situ monitoring.

The main contribution of this study is a unified
framework that combines a scalable ETL architecture,
modular software design, cloud-native deployment,
and advanced visualization. The ETL pipeline extracts
only the essential variables from the large NetCDF
files, reducing the data transfer and processing time,
while maintaining native spatial resolution. A modular,
object-oriented design with clearly defined extractor
and loader interfaces simplifies testing, maintenance,
and adaptation to new data sources or storage back
ends. Additionally, a containerized deployment with an
interactive Dash/Plotly interface enables the 3D scatter
plots and global map projections for detailed analysis
of spatial and temporal XCO2 patterns, even in regions
lacking ground observations.

Several limitations must be recognized. The quality
and completeness of outputs depend on the availability
and latency of OCO-2 products, which are affected by
orbital coverage, cloud interference, and publication
delays. Relying solely on AWS introduces potential
long-term costs and vendor lock-in risks for sustained,
high-volume operations. Methodologically, the system
currently emphasizes descriptive visualization of
CO2 only, and has not yet integrated the data fusion
with other greenhouse gases, meteorological data, or
ground-based observations, nor implemented advanced
uncertainty quantification.

Future work will expand the framework to include
additional satellite missions and trace gases such as
CH4 and NO2, incorporate external atmospheric and
emission models, and systematically validate satellite-
based indicators against the in-situ networks. it is also
planned to leverage the existing integration points
for machine-learning services to enable automated
pattern recognition, anomaly detection, and predictive
analytics for applications such as transport corridors
and industrial regions. Finally, the user experience and
computational performance under realistic workloads
would be assessed, to further optimize the system
for decision support in environmental monitoring,
transportation, and industrial informatics.

Acknowledgements

Funded by the EU NextGenerationEU through the
Recovery and Resilience Plan for Slovakia under the
project No. 09I03-03-V04-00562.

Conflicts of interest

The authors declare that they have no known
competing financial interests or personal relationships
that could have appeared to influence the work reported
in this paper.

need for extensive preprocessing or specialized external
visualization tools.

5	 Discussions

The results indicate that the automated ingestion
of OCO-2 Level 2 Standard and Level 2 Lite FP
products, facilitated by the OPeNDAP protocol, ensures
dependable access to high-resolution atmospheric
CO2data while concurrently minimizing data transfer
overhead. This selective data retrieval mechanism,
synergistically integrated with the ETL pipeline,
decreases the latency between the data availability
and its subsequent visualization. In contrast to
alternative solutions, such as openEO or SAT-CEP-
Monitor, which primarily emphasize interoperability or
event processing, the proposed framework distinguishes
itself by prioritizing modularity and maintainability
within a cohesive cloud environment. Consequently, this
design renders the framework suitable for sustained
deployment, integration with prospective satellite
missions, and the potential for synergistic fusion with
ground-based observational data.

The implemented visualization module, built with
Dash and Plotly, provides an intuitive interface for
the real-time analysis, offering users the ability to
examine both global and regional CO2 patterns. The
ability to isolate the CO2 concentrations over specific
territories, demonstrates the adaptability of the system
even in regions without open-access in-situ monitoring
stations. This highlights the framework’s potential to
fill the observational gaps and to support environmental
research in countries with limited measurement
infrastructure.

Despite its advantages, several limitations must be
acknowledged. The system’s performance depends on
the availability and quality of satellite data, which may
vary due to orbital coverage, atmospheric conditions, or
latency in dataset publication. Furthermore, while the
AWS-based deployment ensures scalability, the long-
term sustainability could benefit from cost optimization
strategies or the adoption of hybrid cloud-edge
architectures. The current model also primarily focuses
on CO2 data. Extending it to include other greenhouse
gases, such as CH4 or NO2, would improve its utility for
comprehensive climate monitoring.

6	 Conclusion

In this paper are presented the design and
implementation of a modular, cloud-based information
system for automatic acquisition, processing, and
visualization of satellite-derived CO2 data. The system
combines the OCO-2 Level 2 Standard and Level 2 Lite
FP products into an ETL pipeline using the OPeNDAP
protocol, is deployed on AWS, and offers an interactive

C20 	 V A L A S E K e t a l .

C O M M U N I C A T I O N S 1 / 2 0 2 6 	 V O L U M E 2 8

References

[1]	 SELTENRICH, N. A Satellite view of pollution on the ground: long-term changes in global nitrogen dioxide.
Environmental Health Perspectives [online]. 2016, 124(3), A56 [accessed 2025-11-20]. ISSN 0091-6765,
eISSN 1552-9924. Available from: https://doi.org/10.1289/ehp.124-A56

[2]	 HAKKARAINEN, J., IALONGO, I., KOENE, E., SZELĄG, M. E., TAMMINEN, J., KUHLMANN, G.,
BRUNNER, D. Analyzing local carbon dioxide and nitrogen oxide emissions from space using the divergence
method: an application to the synthetic SMARTCARB dataset. Frontiers in Remote Sensing [online]. 2022, 3,
878731 [accessed 2025-11-20]. eISSN 2673-6187. Available from: https://doi.org/10.3389/frsen.2022.878731

[3]	 KUHLMANN, G., HENNE, S., MEIJER, Y., BRUNNER, D. Quantifying CO2 emissions of power plants with
CO2 and NO2 imaging satellites. Frontiers in Remote Sensing [online]. 2021, 2, 689838 [accessed 2025-10-19].
eISSN 2673-6187. Available from: https://doi.org/10.3389/frsen.2021.689838

[4]	 CAJOVA KANTOVA, N., BELANY, P., HOLUBCIK, M., CAJA, A. Energy consumption depending on the
durability of pellets formed from sawdust with an admixture of FFP2 masks. Energies [online]. 2022, 15(13),
4813 [accessed 2025-10-28]. eISSN 1996-1073. Available from: https://doi.org/10.3390/en15134813

[5]	 LIN, X., VAN DER A, R., DE LAAT, J., ESKES, H., CHEVALLIER, F., CIAIS, P., DENG, Z., GENG, Y., SONG,
X., NI, X., HUO, D., DOU, X., LIU, Z. Monitoring and quantifying CO2 emissions of isolated power plants
from space. Atmospheric Chemistry and Physics [online]. 2023, 23(11), p. 6599-6611 [accessed 2025-10-15].
ISSN 1680-7375, eISSN 1680-7324. Available from: https://doi.org/10.5194/acp-23-6599-2023

[6]	 DIMDORE-MILES, O. B., PALMER, P. I., BRUHWILER, L. P. Detecting changes in Arctic methane emissions:
limitations of the inter-polar difference of atmospheric mole fractions. Atmospheric Chemistry and Physics
[online]. 2018, 18(24), p. 17895-17907 [accessed 2025-10-29]. ISSN 1680-7375, eISSN 1680-7324. Available from:
https://doi.org/10.5194/acp-18-17895-2018

[7]	 BLACKHURST, M., MATTHEWS, H. S. Comparing sources of uncertainty in community greenhouse gas
estimation techniques. Environmental Research Letters [online]. 2022, 17(5), 053002 [accessed 2025-10-15].
ISSN 1748-9326. Available from: https://doi.org/10.1088/1748-9326/ac6084

[8]	 LIU, F., DUNCAN, B. N., KROTKOV, N. A., LAMSAL, L. N., BEIRLE, S., GRIFFIN, D., MCLINDEN, C.
A., GOLDBERG, D. L., LU, Z. A methodology to constrain carbon dioxide emissions from coal-fired power
plants using satellite observations of co-emitted nitrogen dioxide. Atmospheric Chemistry and Physics
[online]. 2020, 20(1), p. 99-116 [accessed 2025-10-15]. ISSN 1680-7375, eISSN 1680-7324. Available from:
https://doi.org/10.5194/acp-20-99-2020

[9]	 WU, S., YAN, Y., DU, Z., ZHANG, F., LIU, R. Spatiotemporal visualization of time-series satellite-derived CO2
flux data using volume rendering and GPU-based interpolation on a cloud-driven digital earth. ISPRS Annals
of the Photogrammetry, Remote Sensing and Spatial Information Sciences [online]. 2017, IV-4/W2, p. 77-85
[accessed 2025-10-11]. ISSN 2194-9042, eISSN 2194-9050. Available from: https://doi.org/10.5194/isprs-annals-
IV-4-W2-77-2017

[10]	 YAVARI, A., MIRZA, I. B., BAGHA, H., KORALA, H., DIA, H., SCIFLEET, P., SARGENT, J., TJUNG, C.,
SHAFIEI, M. ArtEMon: artificial intelligence and internet of things powered greenhouse gas sensing for
real-time emissions monitoring. Sensors [online]. 2023, 23(18), 7971 [accessed 2025-11-05]. eISSN 1424-8220.
Available from: https://doi.org/10.3390/s23187971

[11]	RUSHTON, C. E., TATE, J. E., SJODIN, A. A modern, flexible cloud-based database and computing service
for real-time analysis of vehicle emissions data. Urban Informatics [online]. 2025, 4(1), 1 [accessed 2025-10-17].
eISSN 2731-6963. Available from: https://doi.org/10.1007/s44212-024-00066-4

[12]	CAI, K., GUAN, L., LI, S., ZHANG, S., LIU, Y. Full-coverage estimation of CO2 concentrations in China via
multisource satellite data and Deep Forest model. Scientific Data [online]. 2024, 11(1), 1231 [accessed 2025-10-
29]. eISSN 2052-4463. Available from: https://doi.org/10.1038/s41597-024-04063-9

[13]	OTHMAN, A., HRAD, J., HAJEK, J., MAGA, D. Control strategies of hybrid energy harvesting - a survey.
Sustainability [online]. 2022, 14(24), 16670 [accessed 2025-10-28]. eISSN 2071-1050. Available from:
https://doi.org/10.3390/su142416670

[14]	 TANIMOTO, H., MATSUNAGA, T., SOMEYA, Y., FUJINAWA, T., OHYAMA, H., MORINO, I., YASHIRO,
H., SUGITA, T., INOMATA, S., MÜLLER, A., SAEKI, T., YOSHIDA, Y., NIWA, Y., SAITO, M., NODA, H.,
YAMASHITA, Y., IKEDA, K., SAIGUSA, N., MACHIDA, T., FREY, M. M., LIM, H., SRIVASTAVA, P., JIN,
Y., SHIMIZU, A., NISHIZAWA, T., KANAYA, Y., SEKIYA, T., PATRA, P., TAKIGAWA, M., BISHT, J., KASAI,
Y., SATO, T. O. The greenhouse gas observation mission with Global Observing SATellite for Greenhouse
gases and Water cycle (GOSAT-GW): objectives, conceptual framework and scientific contributions. Progress in
Earth and Planetary Science [online]. 2025, 12(1), 8 [accessed 2025-10-28]. eISSN 2197-4284. Available from:
https://doi.org/10.1186/s40645-025-00684-9

C L O U D - B A S E D M O D U L A R S Y S T E M F O R A C Q U I S I T I O N A N D V I S U A L I Z A T I O N O F O C O - 2 R E M O T E L Y . . . 	 C21

V O L U M E 2 8 	 C O M M U N I C A T I O N S 1 / 2 0 2 6

[15]	JANAIRO, A. G., CONCEPCION, R., GUILLERMO, M., FERNANDO, A. A Cloud computing framework for
space farming data analysis. AgriEngineering [online]. 2025, 7(5), 149 [accessed 2025-10-28]. eISSN 2624-7402.
Available from: https://doi.org/10.3390/agriengineering7050149

[16]	 SCHUMACHER, B., GRIFFITHS, P., PEBESMA, E., DRIES, J., JACOB, A., THIEX, D., MOHR, M.,
BRIESE, C. openEO Platform - showcasing a federated, accessible platform for reproducible large-scale Earth
Observation analysis. In: EGU General Assembly 2023: abstracts [online]. 2023. EGU23-8526 [accessed 2025-
10-25]. Available from: https://doi.org/10.5194/egusphere-egu23-8526

[17]	 ROMERO JURE, P. V., CABRAL, J. B., MASUELLI, S. ETL for the integration of remote sensing data. In:
Argentine Symposium on Images and Vision / Simposio Argentino de Imagenes y Vision (SAIV 2023) - JAIIO 52:
proceedings [online]. 2023 [accessed 2025-10-22]. Available from: http://sedici.unlp.edu.ar/handle/10915/165724

[18]	SEMLALI, B.-E. B., AMRANI, C. E., ORTIZ, G., BOUBETA-PUIG, J., GARCIA-DE-PRADO, A. SAT-CEP-
monitor: An air quality monitoring software architecture combining complex event processing with satellite
remote sensing. Computers and Electrical Engineering [online]. 2021, 93, 107257 [accessed 2025-10-26].
ISSN 0045-7906, eISSN 1879-0755. Available from: https://doi.org/10.1016/j.compeleceng.2021.107257

[19]	SEMLALI, B.-E. B., AMRANI, C. E. A Stream processing software for air quality satellite datasets. In: Advanced
Intelligent Systems for Sustainable Development (AI2SD’2020). KACPRZYK, J., BALAS, V. E., EZZIYYANI, M.
(Eds.). Cham: Springer International Publishing, 2022. ISBN 978-3-030-90633-7, p. 839-853. Available from:
https://doi.org/10.1007/978-3-030-90633-7_71

[20]	OPeNDAP at American Geophysical Union (AGU) 2024 - OPeNDAP [online] [accessed 2025-11-20]. Available
from: https://www.opendap.org/opendap-at-american-geophysical-union-agu-2024/

[21]	OPeNDAP at American Geophysical Union (AGU) 2023 - OPeNDAP [online] [accessed 2025-11-20]. Available
from: https://www.opendap.org/opendap-at-american-geophysical-union-agu-2023/

[22]	University Corporation for Atmospheric Research [online] [accessed 2025-10-27]. Available from:
https://www.ucar.edu/

