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Resume
In this paper is presented a cloud-based framework for automated acquisition 
and visualization of Orbiting Carbon Observatory-2 (OCO-2) satellite 
CO2 data. The system employs an ETL pipeline with OPeNDAP protocol 
for selective data retrieval, reducing network overhead while processing 
L2 Standard and L2 Lite FP products. Built on Amazon Web Services 
(AWS) infrastructure, using Python (Pandas, Dash, Plotly) and Docker 
orchestration, the modular architecture implements dependency injection 
for runtime flexibility. The deployed system achieves daily automated 
ingestion with 2.25 km × 1.29 km spatial resolution, enabling the real-time 
monitoring through interactive web visualization. The system is designed 
as a foundation for future analytical research, providing ready integration 
points for machine learning models to perform advanced CO2 pattern 
recognition and predictive analysis.
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diverse observational platforms, including ground-based 
in-situ sensors and atmospheric models, to enhance the 
accuracy and robustness of CO₂ emission estimates [7]. 
Most high-quality observations are concentrated in the 
Northern Hemisphere, especially between 30°N and 
70°N, where the industrial activity is most intensive. 
In the future, a more uniform global coverage is 
essential for a comprehensive understanding of carbon 
cycle dynamics and for supporting climate mitigation 
strategies [8]. This uneven coverage creates substantial 
data gaps, especially in polar regions and over the 
oceans, which play a crucial role in carbon sequestration. 
This fact limits our understanding of global carbon cycle 
dynamics. To address these limitations, a scalable cloud-
based data storage and visualization tool is imperative 
for managing the multi-type geospatial data generated 
from satellite-derived CO2 flux measurements [9].

Transportation represents one of the most significant 
sources of anthropogenic CO2 emissions, contributing 
nearly a quarter of global energy-related greenhouse 
gases. Freight road activity alone accounts for a 

1	 Introduction

The current level of CO2 in the atmosphere has 
increased in the last decades significantly, necessitating 
advanced monitoring techniques such as those offered by 
satellite-based remote sensing [1]. These platforms offer 
a unique vantage point for comprehensive atmospheric 
observations, enabling the precise quantification of 
greenhouse gas concentrations and their spatial and 
temporal variations [2]. This approach is critical for 
identifying emission hotspots, such as large urban 
centers, power plants, and industrial facilities, which 
are major contributors to anthropogenic CO₂ emissions 
[3-4]. However measurements are not consistent and not 
all localities have the same measurement fidelity, with 
current methods facing challenges in distinguishing 
anthropogenic CO₂ signals from background 
concentrations and limitations in spatio-temporal 
resolution [5]. Furthermore, the distribution of CO₂ 
satellite measurements exhibits significant latitudinal 
bias [6]. This necessitates the integration of data from 
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structured data processing architectures to manage the 
massive volumes of geospatial and satellite information 
generated by modern EO missions. Romero et al. [17] 
introduced an ETL-based framework for integrating 
remote sensing data from multiple satellites, 
demonstrating a modular architecture that enables 
extraction, transformation, and loading of heterogeneous 
data formats (e.g., NetCDF, HDF, GeoTIFF) into unified 
analytical repositories. Implemented in Python, and 
compatible with workflow systems, such as Apache 
Airflow and Dagster, their design facilitates flexible and 
scalable data fusion across instruments like GOES-16 
and CloudSat, though its focus remains primarily on 
cloud profiling and radiometric data.

Similarly, Boudriki Semlali and El Amrani 
[18] proposed a hybrid ETL and stream-processing 
architecture combining the SAT-ETL-Integrator 
for satellite data preprocessing with the SAT-CEP-
Monitor for real-time analysis based on Complex Event 
Processing (CEP). Their system integrates multisource 
datasets from NASA, NOAA, and ESA satellites with 
ground-based observations, performing multi-stage ETL 
operations and CEP aggregation to compute air-quality 
indices in near-real time. The approach demonstrated 
high processing efficiency and strong agreement with 
ground-based data (r = 0.75), underscoring the potential 
of ETL + CEP frameworks for environmental satellite 
data analytics.

While these works advance data integration and real-
time processing, existing architectures remain limited in 
handling satellite-based CO2 column measurements. 
For example, Boussaada et al. [19] describe a multilayer 
system architecture comprising Data Acquisition, Data 
Processing and Communication, Data Storage, and 
Application Layer, that primarily targets ground-based 
IoT sensors and citizen monitoring.

In contrast, this new approach extends the 
architectural model with dedicated modules for satellite 
CO2 data, including an ETL pipeline, georeferencing, 
spatio-temporal interpolation, and integration with 
emission and meteorological models. This design 
establishes a systematic preprocessing layer for satellite-
derived CO2 datasets, addressing a critical gap in 
current EO data processing frameworks.

3	 Materials and methods

In this section, an innovative and methodological 
framework for the systematic acquisition, processing, 
and interactive spreading of the large-scale atmospheric 
carbon dioxide (CO2) data was introduced. Conventional 
approaches often face challenges related to voluminous 
data transfer, inflexible processing pipelines, and 
the presentation of findings in static, non-interactive 
formats. The system presented in this work addresses 
these limitations by combining a selective data-access 
mechanism with a modular, high-performance processing 

substantial portion of these emissions, approximately 
29.4% of all the transport-related carbon output [10]. 
Accurate monitoring of CO2 in transport corridors, 
urban traffic zones, and major logistic hubs is therefore 
essential for assessing the environmental impact of 
mobility systems and evaluating the effectiveness of 
decarbonization policies. Leveraging modern cloud-
based solutions can overcome the complex demands 
of air quality management and policy monitoring by 
providing advanced tools for environmental monitoring 
and policy formulation [11]. Satellite-based CO2 

measurements provide valuable large-scale insights 
into emission patterns from road, air, and maritime 
transport, complementing ground-based inventories 
that often lack spatial coverage or temporal consistency. 
Specifically, satellites like the Orbiting Carbon 
Observatory-2 offer high-resolution spatiotemporal data 
of CO₂ concentrations [12].

Global energy consumption is strongly coupled 
with CO₂ emissions: as the number of IoT devices, 
deployed for CO₂ monitoring, continues to increase, the 
associated energy demand likewise increases and is 
still largely met by fossil-based generation within the 
current energy mix. These trends motivate the use of 
hybrid energy-harvesting techniques to enable large-
scale sensor networks to operate more sustainably, 
without further amplifying the carbon footprint of the 
monitoring infrastructure [13].

In this paper, the development of a cloud-based 
system, specifically designed for the acquisition and 
transmission of carbon dioxide data from satellite 
sources to a custom visualization platform, is detailed. 
This system leverages Amazon Web Services for its 
scalable and flexible infrastructure, enabling the 
robust data processing and monitoring capabilities 
[14]. The architecture integrates satellite-derived CO2 

measurements, facilitating their secure streaming and 
storage within the AWS ecosystem [15].

2	 Related works

The cloud-based Earth Observation (EO) data 
processing platforms have evolved significantly to 
address the challenges of managing and analyzing 
large-scale satellite datasets. The openEO initiative 
represents a key advancement in this field, establishing 
an open API standard that abstracts away infrastructure 
complexities. Developed within the H2020 project (2017-
2020) [16], openEO provides a unified framework for 
accessing diverse satellite data sources through high-
level abstractions that treat image collections as data 
cubes, enabling scientists to focus on analysis rather than 
data handling. The Application Programming Interface 
(API) supports multiple client libraries (Python, R, 
JavaScript, QGIS) and integrates with existing image 
analysis services.

Recent studies highlight the growing need for 
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process of obtaining the addresses of the required data 
files from the THREDDS catalog.

The Requests library is employed to access the 
data repository, as it provides essential authentication 
support and significantly simplifies interface for working 
with HTTP protocol compared to Python’s standard 
library. The retrieved data files must subsequently 
be converted to DataFrame objects implemented by 
the Pandas library. A DataFrame is a highly efficient 
data structure specifically designed for tabular data, 
rigorously supports critical operations such as filtering, 
such as filtering, aggregations and statistical operations. 
Pandas itself is a high-level data manipulation library, 
primarily engineered for advanced data analysis tasks. Its 
core components are implemented in the C programming 
language, which ensures high performance, while 
maintaining the simplicity and flexibility of Python.

After the processing and analysis, the obtained 
and transformed data need to be stored in a persistent 
storage system. Several storage options were designed 
for the needs of the application, such as CSV file stored 
on a local disk or Parquet file stored on a network-
accessible data repository.

The first option, a CSV file on the local disk, is 
primarily intended for local testing, as CSV files are 
text based and human readable without requiring 
specialized software. In contrast, the Parquet files are 
binary and not directly readable without required tools, 
however, they provide higher efficiency for reading and 
writing operations and require less disk space. They are, 
therefore, more suitable for cloud storage environments. 

For the data processing, the Extract, Transform, 
Load (ETL) process was adopted. This process consists 
of three main phases: extraction, transformation, and 
loading of the data.

The extraction phase involves acquiring data from 
one or more internal or external sources that may 
contain structured or unstructured data. It includes 
the initial validation of received data, ensuring that 
they are in the correct format and structure. During 
the transformation phase, various functions and rule 
sets are applied to the data, including filtering, filling in 
missing values, aggregation, and merging. The loading 
phase refers to storing the processed data in internal 
storage, which may include a file system, database, or 
data warehouse. All acquired data are stored to enable 
subsequent analysis.

Within this process, a function for analyzing the 
newly acquired and cleaned data is also executed. 
During this analysis phase, various aggregations 
and computations of supplementary information 
are performed, operations that would be inefficient 
to execute during each visualization. The analyzed 
data are likewise stored in the internal storage for 
further use. In addition, the processed data are 
continuously supplied to external machine learning 
model using the provider interface for further analysis  
and predictions.

pipeline and a dynamic, web-based visualization 
interface. The research led up to the instantiation of this 
framework as a web application for visualizing global CO2 
concentrations derived from satellite measurements, 
thereby demonstrating its efficacy and utility.

The main functions of the data module are the 
acquisition, processing, analysis, and storage of data 
from satellite measuring stations. One of the first 
tasks, therefore, was to find a suitable data source 
and secure programmatic access to the storage. We 
designated the Orbiting Carbon Observatory-2 (OCO-2) 
satellite measuring station as the primary data source. 
The measured data is stored in a publicly accessible 
repository managed by the Goddard Earth Sciences 
Data and Information Services Center (GES DISC) at 
NASA Goddard Space Flight Center. The data available 
in the storage facility are at various levels of processing, 
typically 0 to 4. The proposed application works with 
level 2 data, which are mapped to the relevant latitude 
and altitude and contain error indicators that specify 
whether the data are suitable for use. Two types of 
data products are the most suitable for processing: 
L2 Standard and L2 Lite FP. The L2 Standard data 
product is usually available one to two days after the 
measurement itself, but only for the current calendar 
year. The L2 Lite FP represents condensed data files 
that have undergone more thorough correction. Those 
files have been available approximately one month 
after the measurement itself since 2014. In this case, 
one data file represents one day, which allows for 
easier processing compared to L2 Standard files. In the 
proposed application, L2 Standard data was selected 
for daily downloads of new data and L2 Lite FP for 
downloading historical data.

There are several ways to access data. For the 
purposes of the proposed application, the OPeNDAP 
(Open-source Project for a Network Data Access Protocol) 
protocol was chosen. This is an open protocol for 
accessing data files based on http technology [20]. This 
protocol allows only selected variables of data files to be 
downloaded in NetCDF format, which makes it possible 
to work with a much smaller volume of data, resulting 
in less network load and faster processing. On the data 
provider side, the OPeNDAP protocol uses Hyrax server 
software with support for THREDDS catalogs [21]. The 
THREDDS catalogs are XML files that organize and 
describe data files and folders in the repository, making 
it possible to navigate the repository folders and find the 
desired files by date [22]. The storage has a root folder 
with a fixed address. The root folder, like all others, 
contains a catalog with a list of files, their address for 
access via the OPeNDAP protocol, and a list of nested 
folders. Access to data files depends on the selected type 
of data product, L2 Standard or L2 Lite FP. The folder 
structure and file naming are different in both cases. 
The program must be designed to work with both cases. 
The application must also include a function that works 
with these catalogs. The following flowchart shows the 
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BaseExtractor class, operating without access to real 
online data. It returns a DataFrame object supplied 
through the constructor and is used exclusively for 
automated testing purposes. This allows testing of 
the ETL Pipeline logic with controlled input data and 
without the need for an internet connection.

The abstract class BaseOpendapExtractor overrides 
the constructor of BaseExtractor by introducing 
a mandatory parameter, opendap_client, of type 
OpendapClient. The OpendapClient class defines and 
implements a simple interface for communication with 
a server via the OPeNDAP protocol and for interaction 
with the THREDDS catalog.

The classes OpendapExtractor_L2Standard and 
OpendapExtractor_L2LiteFP implement access to the 
actual data repository, managing authentication against 
the storage system and searching for files based on the 
specified date range.

The abstract class BaseLoader provides the 
fundamental interface for the data storage. The method 
save_dataframe accepts a parameter of type DataFrame 
and a desired filename, which it saves to persistent 
storage. Conversely, the method retrieve_dataframe 
accepts the name of the file to be opened and returns 
a DataFrame object. The retrieve_dataframe method 
is also utilized in the design of the application’s 
visualization module. The implementation of the data 
storage operations is encapsulated within individual 
concrete subclasses.

The TestLoader class represents the implementation 
of the abstract BaseLoader class, operating without 
the use of a database system or file storage. It works 
exclusively with a DataFrame object in system memory, 

Figure 1 illustrates the main components and 
interactions within the ETL workflow. The central ETL 
process receives user-defined inputs through the task 
scheduler and system administrator, which trigger 
extraction, transformation, and loading operations. The 
Extract module retrieves raw data from external storage, 
while the Transform module performs preprocessing and 
normalization of the extracted datasets. The processed 
data is then passed to the Data analysis component, 
which is connected to the machine learning model and 
subsequently stored in the database through the Load 
module. Feedback on the task completion is returned 
to the system administrator, ensuring the controlled 
execution and monitoring of the ETL pipeline.

Figure 2 illustrates the class diagram of the 
application’s data module. The entire ETL process 
is managed by the ETL Pipeline class through the 
dependencies extract_strategy and load_strategy, 
which are provided to the ETL Pipeline object via 
its constructor, depending on the configuration 
of the runtime environment. The data module was 
designed in accordance with the principles of object-
oriented programming: abstraction, encapsulation, 
polymorphism, and inheritance.

The abstract class BaseExtractor provides a basic 
interface for the data acquisition. The method extract_
date_range accepts a date range as its parameter 
specifying the period for which data should be 
downloaded, and returns a pair consisting of the date and 
a DataFrame object. The actual implementation of data 
retrieval is encapsulated within concrete subclasses.

The TestExtractor class represents the 
straightforward implementation of the abstract 

Figure 1 Data Flow Architecture of the ETL Pipeline with integrated Data Analysis Module
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supports file versioning. When a file is overwritten, 
its previous version is preserved and can be restored 
in cases such as data corruption. Therefore, the 
implementation of S3ParquetLoader also requires an 
interface for accessing the S3 storage.

The ETL Pipeline class itself provides a minimal 
interface, exposing only the invoke function, which 
initiates the process and manages the provided concrete 
dependencies. The design follows the Dependency 
Injection pattern, in which an object receives its 
dependencies externally rather than creating them 

allowing testing of the ETLPipeline logic without the 
overhead of time-consuming data storage operations.

The LocalCSVLoader class stores the provides 
DataFrame object as a CSV file on disk and retrieves 
data only from that file. It is primarily intended for local 
testing of the application.

The S3ParquetLoader class stores the provides 
DataFrame object as a Parquet file in a data repository. 
The design assumes the use of Amazon Web Services 
(AWS) S3 storage, as the application is intended to be 
deployed in the AWS environment. This storage system 

Figure 2 Class diagram of the data module for application

Figure 3 Class diagram of data module for application with ETL Pipeline
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for working with graphical visualizations and offer 
seamless mutual integration.

An application built using the Dash library 
functions as a lightweight web interface that listens 
on a predefined port, processes the HTTP requests, 
and returns responses. The user interface (UI) is 
defined using Python code. The library includes an html 
module, whose classes are translated at runtime into 
the corresponding HTML elements. Objects of these 
html classes are inserted into the application’s layout 
attribute along with their properties. Based on this 
declarative structure, the corresponding HTML user 
interface is generated automatically.

The library provides a variety of interactive 
components, such as buttons and forms, which can be 
utilized in the application’s design. Interaction with 
these elements is linked to specific application functions 
through unique element identifiers. Such a function is 
referred to as a callback and governs the modification 
of one or more HTML elements in response to user 
interaction - for example, re-rendering graphs with 
updated data when the user changes the selected date 
range. The design of these callback functions should 
follow the functional programming paradigm, meaning 
that they should not modify the internal state of the 
application but instead return output based only on 
input parameters.

The visualization components of the user interface 
are rendered using the Plotly library, which supports 
a wide range of chart types, including bar charts, line 
charts, maps, and correlation diagrams. Plotly functions 
accept DataFrame objects as their primary data source, 
allowing direct integration with the BaseLoader objects 
introduced in the previous section for data access.

Figure 4 presents a conceptual data flow diagram, 
illustrating the user interaction with the graphic user 
interface and sequential data processing components. 
The callback function handler accepts the input and 
calls the loader object for updated data. Loader object 
plays an intermediary role between the callback handler 
and a data repository. Such architecture allows for 

internally. Injecting dependencies that implement 
a common interface into the controller class allows 
the replacement of components at runtime without 
modifying the controller’s source code. The ETL process 
in the application can be initiated from two sources: 
the Command-Line Interface (CLI) or a task scheduler. 
The CLI interface is managed by the Typer library, 
which simplifies the definition and parsing of command 
parameters. This allows for selection of a specific subclass 
of type BaseExtractor at the moment the command is 
executed. The function called by the command invoke-
etl is defined in Figure 3. The pipeline_factory function 
supplements the required dependencies and returns an 
ETLPipeline object ready for execution. The example 
code below illustrates the invoke_etl function, which is 
triggered by the invoke-etl command within the CLI 
environment. Besides specifying the input dates, the 
user can also select the class used for data extraction.

Another method of triggering the ETL process is 
through a task scheduler. For this purpose, the Celery 
library is deployed, which enables the execution of 
scheduled and background tasks within the application. 
The configuration file defines the schedule read by 
Celery at startup. The schedule includes a single task, 
daily_etl_task_L2_Standard, which runs daily at 06:00, 
along with the definition of the task itself. The provided 
code snippet represents the Celery configuration, 
including the setup of periodic task scheduling.

3.1	 Visualization module design

The main function of the visualization module is to 
display the results of data analysis to the user in the 
form of a web interface. Consequently, it is necessary to 
select appropriate software libraries for implementing 
an HTTP server and for generating and rendering 
various types of plots. For this purpose, the Dash and 
Plotly libraries were chosen. Both are open-source 
software libraries developed by Plotly Technologies Inc. 
and are freely available. They provide a simple interface 

Figure 4 Class diagram of data module for application with ETL Pipeline
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accessed through THREDDS Catalogue and OPENDAP 
NetCDF4 services.

The core of the architecture is Celery, a distributed 
task queue that operates as a worker to handle 
scheduled tasks for the data processing module. Data 
is stored in AWS S3 cloud storage and structured 
using Apache Parquet for optimal performance and 
accessibility. The Plotly App serves as the user interface, 
facilitating initial data preload and user interactions. 
Celery‘s callback functions are specifically used to 
respond to user interface requests, enabling seamless 
communication between the data processing module 
and the user interface. Redis is employed for caching 
and message brokering, enhancing system performance 
and responsiveness. Additionally, a machine learning 
service provider is integrated to supply the advanced 
analytics and enhance data analysis capabilities. This 
architecture emphasizes the seamless flow of data 
from external sources through processing and storage 
to user interaction, leveraging the robust open-source 
technologies to support environmental data processing 
and distribution. 

4	 Results

After the deployment, the application operated 
as expected. It downloaded the new data daily from 
the L2 Standard data product, provided that the 
data were available. If no data were accessible, the 
application reported an error, which was automatically 
communicated to the system administrator via the Sentry 
monitoring service. For historical data dating back to 
the beginning of 2023, the L2 Lite FP data product was 
utilized. Although those data were uploaded to storage 
with a monthly delay, they were of higher quality and 
underwent more rigorous validation procedures.

various persistent storage implementations. Loader 
then fulfills the query and passes the data to the 
callback handler, which then updates the graphic user 
interface accordingly.

A function that responds to user interaction must 
repeatedly establish connections to the database 
or the local file system and query large volumes of 
data. Consequently, situations may arise in which the 
response time exceeds the default timeout settings of the 
web server or the user’s browser. Furthermore, a large 
number of long running calls could potentially overload 
all threads of the web application process. To mitigate 
these issues, background execution is employed.

Upon user interaction, the interactive input elements 
are temporarily disabled, and the execution request is 
placed into a dedicated task queue. Once the task is 
completed, the relevant element of the user interface is 
updated accordingly. The task queue management and 
sequential execution of commands are handled by the 
Celery library, which also serves as a task scheduler in 
the application’s data module.

Figure 5 presents the class diagram of the 
application’s visualization module. The abstract class 
BaseLoader, similar to its counterpart in the data 
module, provides an interface for loading data from a 
database or local disk. A specific implementation object 
is injected as a dependency into the update_graph 
function. This dependency injection design allows for 
the update_graph function logic to be tested without 
requiring an active database connection. As in the data 
module, a Settings class is also used and injected as a 
dependency during the application’s startup.

Figure 6 displays a system architecture diagram 
with the technologies used to support the system. The 
application integrates external data sources from NASA 
GES DISC, including the OCO-2 L2 LITE FP and 
OCO-2 L2 STANDARD datasets. Those datasets are 

Figure 5 Class diagram for the visualization module of application
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global trends or for predictive modeling; however, such 
analyses are typically conducted in conjunction with 
meteorological and other complementary models.

Figure 7 illustrates the cloud-based deployment 
of the ETL and data processing services using Docker 
Compose. Incoming HTTP requests are routed through 
an Nginx reverse proxy running on the host operating 
system. The proxy forwards the requests to a Gunicorn 
application server that handles multiple worker instances 
on port 8050. The background data processing tasks are 
managed by a Celery service (worker and scheduler), 
which interacts with two supporting components: All 
the components run as Docker containers orchestrated 
within a single server environment, ensuring 
scalability, modularity, and fault isolation across  
services.

The examples in Figures 8 and 9 show the user 
interface of application for the two different user-

The spatial resolution of the satellite sensors is 
2.25 km × 1.29 km. Consequently, the acquired data can 
also be used for analyses of smaller geographic regions, 
provided that sufficient satellite coverage is available. 
A preliminary analysis of the dataset indicates that 
the satellite-based measurements closely follow the 
trends observed in ground-based monitoring stations, 
including seasonal variations and hemispheric extremes. 
Furthermore, the dataset enables the observation of 
global trends and anomalies, as well as the identification 
of sources, sink regions, and regional variations in 
atmospheric carbon dioxide concentration throughout 
the year.

The use of satellite data has also made it possible to 
isolate the CO2 concentration values over the territory 
of Slovakia, a region where no open access ground-based 
measurement stations are available. These data can be 
employed for the more complex analyses of regional and 

Figure 6 The class diagram for GUI module of application

Figure 7 System architecture of the container-based deployment environment
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spatial structure of the XCO2 field and highlights broad 
geographic variations.

The right-hand panel shows the corresponding 
global map projection for the same month and uses the 
identical color scale and marker values, emphasizing the 
spatial variability and regional patterns for the same 
period. Regions without colored symbols correspond 
to areas where no OCO-2 satellite measurements 
were available for the selected month. A common 
color scale (ppm) is applied to both panels to ensure 
consistent comparison of concentration levels. When 
considered together, the 3D scatter plots and global 
map projections provide complementary perspectives 
on the distribution and magnitude of observed XCO₂. 
Both panels incorporate interactive functionality that 
enables detailed exploration of localized spatial patterns. 
This integrated visualization framework provides a 
compact, interactive environment for data exploration, 
anomaly detection, and trend analysis, without the 

selected datasets. For each selection, the visual outputs 
are updated dynamically to the chosen time period, 
enabling direct comparison of spatial and temporal 
variations in atmospheric CO2 using both the 3D scatter 
plots and global map projections.

The left-hand panels of Figures 8 and 9 present the 
3D scatter plots of mean XCO2, the column-averaged 
dry-air mole fraction of atmospheric CO2, as a function of 
latitude (x-axis) and longitude (y-axis) for January 2024 
and October 2023 respectively. Each marker corresponds 
to the average of XCO2 value per degree of latitude 
and one degree of longitude. Marker color follows 
the adjacent color bar (ppm) and encodes the same 
XCO2values shown on the vertical axis - warmer colors 
indicate higher concentrations. Since the plot projects 
many closely spaced retrievals, regional gradients are 
best read by following the color and height trends 
across latitude/longitude ranges rather than individual 
markers. This representation effectively captures the 

Figure 8 Graph and visualization for average monthly values - January 2024

Figure 9 Graph and visualization for average monthly values - October 2023
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web interface for exploring global and regional XCO2 
distributions, including areas without in-situ monitoring.

The main contribution of this study is a unified 
framework that combines a scalable ETL architecture, 
modular software design, cloud-native deployment, 
and advanced visualization. The ETL pipeline extracts 
only the essential variables from the large NetCDF 
files, reducing the data transfer and processing time, 
while maintaining native spatial resolution. A modular, 
object-oriented design with clearly defined extractor 
and loader interfaces simplifies testing, maintenance, 
and adaptation to new data sources or storage back 
ends. Additionally, a containerized deployment with an 
interactive Dash/Plotly interface enables the 3D scatter 
plots and global map projections for detailed analysis 
of spatial and temporal XCO2 patterns, even in regions 
lacking ground observations.

Several limitations must be recognized. The quality 
and completeness of outputs depend on the availability 
and latency of OCO-2 products, which are affected by 
orbital coverage, cloud interference, and publication 
delays. Relying solely on AWS introduces potential 
long-term costs and vendor lock-in risks for sustained, 
high-volume operations. Methodologically, the system 
currently emphasizes descriptive visualization of 
CO2 only, and has not yet integrated the data fusion 
with other greenhouse gases, meteorological data, or 
ground-based observations, nor implemented advanced 
uncertainty quantification.

Future work will expand the framework to include 
additional satellite missions and trace gases such as 
CH4 and NO2, incorporate external atmospheric and 
emission models, and systematically validate satellite-
based indicators against the in-situ networks. it is also 
planned to leverage the existing integration points 
for machine-learning services to enable automated 
pattern recognition, anomaly detection, and predictive 
analytics for applications such as transport corridors 
and industrial regions. Finally, the user experience and 
computational performance under realistic workloads 
would be assessed, to further optimize the system 
for decision support in environmental monitoring, 
transportation, and industrial informatics.
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need for extensive preprocessing or specialized external 
visualization tools.

5	 Discussions

The results indicate that the automated ingestion 
of OCO-2 Level 2 Standard and Level 2 Lite FP 
products, facilitated by the OPeNDAP protocol, ensures 
dependable access to high-resolution atmospheric 
CO2data while concurrently minimizing data transfer 
overhead. This selective data retrieval mechanism, 
synergistically integrated with the ETL pipeline, 
decreases the latency between the data availability 
and its subsequent visualization. In contrast to 
alternative solutions, such as openEO or SAT-CEP-
Monitor, which primarily emphasize interoperability or 
event processing, the proposed framework distinguishes 
itself by prioritizing modularity and maintainability 
within a cohesive cloud environment. Consequently, this 
design renders the framework suitable for sustained 
deployment, integration with prospective satellite 
missions, and the potential for synergistic fusion with 
ground-based observational data.

The implemented visualization module, built with 
Dash and Plotly, provides an intuitive interface for 
the real-time analysis, offering users the ability to 
examine both global and regional CO2 patterns. The 
ability to isolate the CO2 concentrations over specific 
territories, demonstrates the adaptability of the system 
even in regions without open-access in-situ monitoring 
stations. This highlights the framework’s potential to 
fill the observational gaps and to support environmental 
research in countries with limited measurement 
infrastructure.

Despite its advantages, several limitations must be 
acknowledged. The system’s performance depends on 
the availability and quality of satellite data, which may 
vary due to orbital coverage, atmospheric conditions, or 
latency in dataset publication. Furthermore, while the 
AWS-based deployment ensures scalability, the long-
term sustainability could benefit from cost optimization 
strategies or the adoption of hybrid cloud-edge 
architectures. The current model also primarily focuses 
on CO2 data. Extending it to include other greenhouse 
gases, such as CH4 or NO2, would improve its utility for 
comprehensive climate monitoring.

6	 Conclusion

In this paper are presented the design and 
implementation of a modular, cloud-based information 
system for automatic acquisition, processing, and 
visualization of satellite-derived CO2 data. The system 
combines the OCO-2 Level 2 Standard and Level 2 Lite 
FP products into an ETL pipeline using the OPeNDAP 
protocol, is deployed on AWS, and offers an interactive 
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