Communications - Scientific Letters of the University of Zilina 2006, 8(4):15-20 | DOI: 10.26552/com.C.2006.4.15-20

Thermal and Mechanical Fatigue in a Qe22 Magnesium Alloy Reinforced with Short Saffil Fibres

Zuzanka Trojanova1, Pavel Lukac1
1 Department of Metal Physics, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic

Using non-destructive methods changes in the microstructure of QE22 metal matrix composites (MMC) due to thermal and mechanical cycling have been investigated. Thermal stresses induced in composites due to a considerable difference between thermal expansion coefficients of the matrix and ceramic reinforcement may create new dislocations on cooling from elevated to ambient temperature. Thermal stresses can achieve the yield stress of the matrix and micro-glide of newly created dislocations as well as their annihilation can occur. Thermodynamic processes in the matrix influence these effects.

Keywords: metal matrix composites, squeeze casting, dislocations, internal friction, acoustic properties, thermal properties

Published: December 31, 2006  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Trojanova, Z., & Lukac, P. (2006). Thermal and Mechanical Fatigue in a Qe22 Magnesium Alloy Reinforced with Short Saffil Fibres. Communications - Scientific Letters of the University of Zilina8(4), 15-20. doi: 10.26552/com.C.2006.4.15-20
Download citation

References

  1. SVOBODA, M., PAHUTOVÁ, M., MOLL, F., BŘEZINA, J., SKLENIČKA, V.: In: Magnesium Alloys and Their Applications. Ed.: Kainer, K.U. Weinheim, Wiley-VCH 2000, p. 234.
  2. POLMEAR, I. J.: Mater. Sci. Techn., 10, 1994, p. 1. Go to original source...
  3. KAINER, K. U.: In: Magnesium Alloys and Their Applications. Eds.: Mordike, B.L., Hehmann, F. Oberursel, DGM 1992, p. 415.
  4. OAKLEY, R., COCHRANE, R. F., STEVENS, R.: Key Engn. Mater., 104-107, 1995, p. 387. Go to original source...
  5. WILKS, T. E., KING, J. F.: In: Magnesium Alloys and Their Applications. Eds.: Mordike, B.L., Hehmann, F. Oberursel, DGM 1992, p. 431.
  6. KAINER, K. U.: Mater. Sci. Eng. A, 135, 1991, p. 243. Go to original source...
  7. GÖKEN, J., RIEHEMANN, W.: Mater. Sci. Eng. A, 324, 2002, p. 134. Go to original source...
  8. GÖKEN, J., RIEHEMANN, W.: Mater. Sci. Eng. A, 370, 2004, p. 417. Go to original source...
  9. ARSENAULT, J. R., SHI, N.: Mater. Sci. Eng., 81, 1986, p. 175. Go to original source...
  10. DUNAND, D. C., MORTENSEN, A.: Acta Metall. Mater., 39, 1991, p. 127. Go to original source...
  11. GRANATO, A. V., LUECKE, K.: J. Appl. Phys., 27, 1956, p. 583. Go to original source...
  12. DE BATIST, R.: In: Materials Science and Technology. Vol. 2B. Eds. Cahn, R.W., Haasen, P., Kramer, J. Weinheim, VCH 1994, p. 159.
  13. GRANATO, A. V., LUECKE, K.: J. Appl. Phys., 52, 1981, p. 7136. Go to original source...
  14. KIEHN, J., SMOLA, B., VOSTRÝ, P., STULÍKOVÁ, I., KAINER, K. U.: phys. stat. sol. (a), 164, 1997, p. 709. Go to original source...
  15. LLORCA, J.: Progr. Mater. Sci., 47, 2002, p. 283. Go to original source...
  16. TROJANOVÁ, Z., MIELCZAREK, A., RIEHEMANN, W., LUKÁČ, P.: Comp. Sci. Tech., 66, 2006, p. 585 Go to original source...
  17. MIELCZAREK, A., RIEHEMANN, W., TROJANOVÁ, Z., LUKÁČ, P.: Mater. Sci. Eng. A, In press.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.