Communications - Scientific Letters of the University of Zilina 2016, 18(4):77-82 | DOI: 10.26552/com.C.2016.4.77-82

Local Method of Approximate Particular Solutions for Two-Dimensional Unsteady Incompressible Flow

Juraj Muzik1, Ladislav Kais1, Roman Bulko1
1 Department of Geotechnics, Faculty of Civil Engineering, University of Zilina, Slovakia

A meshless local method of approximated particular solutions (LMAPS) is used to analyze incompressible fluid flow in a two dimensionalcavity. The method solves the incompressible Navier-Stokes equations in terms of theprimitive variables using the fractional step scheme. The basic equations are derived via interpolation using integrated multiquadrics radial basis functions. Lid-driven cavity benchmark case for various Reynolds numbers is presented in the article. The procedure produces stable solutions with results comparable to those in literature.

Keywords: meshless; localized method of approximated particular solutions; incompressible flows; Navier-Stokes equations

Published: November 30, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Muzik, J., Kais, L., & Bulko, R. (2016). Local Method of Approximate Particular Solutions for Two-Dimensional Unsteady Incompressible Flow. Communications - Scientific Letters of the University of Zilina18(4), 77-82. doi: 10.26552/com.C.2016.4.77-82
Download citation

References

  1. NITHIARASU, P, ZIENKIEWICZ, O.: Analysis of an Explicit and Matrix Free Fractional Step Method for Incompressible Flows, Comput Methods Appl Mech Eng, 2006, 195:5537-51. Go to original source...
  2. LIN, C. Y., GU, M. H., YOUNG, D. L., SLADEK, J., SLADEK, V.: The Localized Method of Approximated Particular Solutions for Solving Two-Dimensional Incompressible Viscous Flow Field, Eng Anal Bound Elem, 2015, 57:23-36. Go to original source...
  3. KOVARIK, K.: Numerical Simulation of Groundwater Flow and Pollution Transport Using the Dual Reciprocity and RBF Method, Communications - Scientific Letters of the University of Zilina, No. 3a, 2010, pp.5-10, ISSN 1335-4205. Go to original source...
  4. KOVARIK, K.: The New Numerical Methods for Mathematical Modelling of Pollutant Transport, Communications - Scientific Letters of the University of Zilina, No. 4, 1999, pp. 59-68, ISSN 1335-4205. Go to original source...
  5. ZHU, T., ZHANG, J., ATLURI, S.: A Meshless Numerical Method Based on the LocalBoundary Integral Equation (LBIE) to Solve Linear and Non-Linear BoundaryValue Problems. Eng Anal Bound Elem 1999, 23:375-89. Go to original source...
  6. SLADEK, V, SLADEK, J, ATLURI, S. N., VAN KEER, R.: Numerical Integration of Singularities in Meshless Implementation of Local Boundary Integral Equations. Comput Mech, 2000, 25:394-403. Go to original source...
  7. KOVARIK, K, MUZIK, J.: A Meshless Solution for Two Dimensional Density-Driven Groundwater Flow, Eng Anal Bound Elem, 2013, 37:187-96. Go to original source...
  8. GINGOLD, R. A., MONAGHAN, J. J.: Smoothed Particle Hydrodynamics: Theory and Applications to Non-Spherical Stars, Mon Not R Astron Soc, 1977, 181:375-89. Go to original source...
  9. KANSA, E. J.: Multiquadrics - a Scattered Data Approximation Scheme with Application to Computational Fluid Dynamics, Comput Math Appl, 1990, 19:127-45. Go to original source...
  10. SANYASIRAJU, Y, CHANDHINI, G.: Local Radial Basis Function Based Gridfree Scheme for Unsteady Incompressible Viscous Flows, J. Comput Phys, 2008, 227:8922-48. Go to original source...
  11. SHU, C, DING, H, YEO, K. S.: Local Radial Basis Function-Based Differential Quadrature Method and its Application to Solve Two-Dimensional Incompressible Navier-Stokes Equations, Comput Methods Appl Mech Eng, 2003, 192:941-54. Go to original source...
  12. ATLURI, S. N., KIM, H-G., CHO, J. Y.: A Critical Assessment of the Truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) Methods, Comput Mech, 1999, 24:348-72. Go to original source...
  13. Lin, H., ATLURI, S. N.: The Meshless Local Petrov-Galerkin (MLPG) Method for Solving Incompressible Navier-Stokes Equations, Comput Model Eng Sci, 2001, 2:117-42. Go to original source...
  14. GHIA, U., GHIA, K. N., SHIN, C. T.: High-resolutionsfor Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method, J. Comput Phys. 1982, 48:387-411. Go to original source...
  15. KOVARIK, K, MUZIK, J, MAHMOOD, M. S.: A Meshless Solution of Two Dimensional Unsteady Flow, Eng Anal Bound Elem, 2012, 36:738-43. Go to original source...
  16. NAJAFI, M., AREFMANESH, A., EJILELA, V.: Meshless Local Petrov-Galerkin Method Higher Reynolds Numbers Fluid Flow Applications, Eng Anal Bound Elem, 2012, 36:1671-85. Go to original source...
  17. HARDY, R. L.: Theory and Applications of the Multiquadrics-Biharmonic Method (20 years of discovery 1968-1988), Comput Math Appl, 1990, 19:163-208. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.