Communications - Scientific Letters of the University of Zilina 2012, 14(3):32-38 | DOI: 10.26552/com.C.2012.3.32-38

Optimization of Thin Shell Structures Using FSD Algorithms

Milan Saga1, Martin Dudinsky1, Peter Pechac1
1 Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Zilina, Slovakia

The paper presents a theoretical and numerical study of the efficiency of the fully stress design (FSD) algorithm in the case of thin shell finite elements. Relation between membrane forces, bending moments and the element thickness is analysed by means of numerical tests. Subsequent numerical testing and a new iterative algoritm to providing the rapid convergence of the optimizing process is proposed.

Keywords: stress analysis, thin shell finite element, fully stress design

Published: September 30, 2012  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Saga, M., Dudinsky, M., & Pechac, P. (2012). Optimization of Thin Shell Structures Using FSD Algorithms. Communications - Scientific Letters of the University of Zilina14(3), 32-38. doi: 10.26552/com.C.2012.3.32-38
Download citation

References

  1. SAGA, M., VASKO, M., KOCUR, R., TOTH, L., KOHAR, R.: Application of Optimizing Algorithms in Solid Mechanics (in Slovak), VTS ZU Zilina, 2006.
  2. HAFTKA, R. T., GURDAL, Z.: Elements of Structural Optimization. Kluwer Academic Publisher, 1992. Go to original source...
  3. DEKYS, V., SAPIETOVA, A., KOCUR, R.: On the Reliability Estimation of the Conveyer Mechanism using the Monte Carlo Method. Proc. COSIM2006, Krynica-Zdroj, august 2006, pp. 67-74.
  4. JAKUBOVICOVA L., KOPAS P., HANDRIK M., VASKO M.: Computational and Experimental Analysis of Torsion and Bending Loading of Specimen. In-Tech 2010, Prague, pp. 395-400.
  5. LEITNER B., KOPAS P.: The Vector Autoregressive Moving Average Models Asa Tool for Stochastically Loaded Dynamic Systems Identification. Machine Dynamics Research, 2010, No. 4, vol. 34, pp. 32-41.
  6. ZIENKIEWICZ, O. C.: The Finite Element Method in Engineering Science. McGraw, Hill, New York, 1971.
  7. ZMINDAK, M., NOVAK, P.: Particles Interactions in Composites Reinforced by Fibre and Spherical Inclusions. Communications - Scientific Letters of the University of Zilina, No. 2, 2009. Go to original source...
  8. ZMINDAK, M., RIECKY, D.: SOUKUP, J.: Failure of Composites with Short Fibers. Communications - Scientific Letters of the University of Zilina, No. 4, 2010. Go to original source...
  9. SAGA, M., VASKO, M.: Stress Sensitivity Analysis of the Beam and Shell Finite Elements. Communications - Scientific Letters of the University of Zilina, vol. 11, No. 2, 2009, pp. 5-12. Go to original source...
  10. KWON, Y. W., BANG, H.: The Finite Element Method using MATLAB. CRC Press University of Minnesota, 1996.
  11. BATHE, K. J.: Finite Element Procedures. New Persey : Prentice Hall, 1996.
  12. SAPIETOVA, A., DEKYS, V., VASKO, M.: A Numerical ModelingRotating Machine Having Unbalance and the Measuring of its Dynamical Properties, Metalurgija (Metallurgy), No. 2, vol. 49, 2010, pp. 503-507.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.