Communications - Scientific Letters of the University of Zilina 2000, 2(4):29-34 | DOI: 10.26552/com.C.2000.4.29-34
The Pyramidal Method for Traveling Salesman Problem
- 1 Faculty of Management Science and Informatics, University of Zilina, Slovak Republic
A shortest pyramidal tour (SPT) is a well-solved case of TSP when a distance matrix is the Monge matrix. We study heuristic repeating method for SPT with the distance matrix without restriction. A new procedure for computing SPT is based on a shortest path in the network. Good results for solved the Euclidean TSP instances with the stochastic version of the demonstrated method are presented.
Keywords: no keywords
Published: December 31, 2000 Show citation
References
- R. E. BURKAD, V. G. DEINKO: On the traveling salesman problem with a relaxed Monge matrix, Spezialforschungsbereich F003, Optimierung und Kontrolle, Karl-Franzens-Universit. at Graz & Technische Univesit. at Graz (1998), 1-10
- E. L. LAWLER, J. K. LENSTRA, A. H. G. RINNOOY KAN AND D. B.SHMOYS: The Traveling Salesman problem, Wiley, Chichester, 1985
- F. SUPNIK: Extreme Hamiltonian line, Annals of Math. 66, (1957), 1957-201
Go to original source...
- V. M. DEMIDENKO AND V. L. FILONENKO: On the reconstruction of special structured matrices, Aktualnyje Problemy EVM i programirovanije, Dnepropetrovsk, DGU, 1979, (in Russian)
- E. L. LAWLER: Shortest path and network flow algorithms, in Discrete Optimization I, Annals of discrete mathematics 4, North-Holland, 1979
Go to original source...
- G. REINELT: TSPLIB - A Traveling Salesman Problem Library, http://www.iwr.ini-heidelberg.de/comopt/soft/TSPLIB95/TSPLIB.htm
- I. STANKOVIANSKÁ A: The Capacited Arc Problems on Transportation Networks (Hranovokapacitné úlohy na dopravných sieťach), - dissertation, Žilina, (1996), (in Slovak)
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.