Communications - Scientific Letters of the University of Zilina 2008, 10(2):72-78 | DOI: 10.26552/com.C.2008.2.72-78

Discrete and Differential Equations in Applied Mathematics

Miroslava Ruzickova1
1 Department of Mathematical Analysis and Applied Mathematics, Faculty of Science, Universtiy of Zilina, Slovakia

In the contribution we map investigations performed in mathematics at the Faculty of Science in 2003-2007. Main directions developed at the faculty are described and some of the latest achievements are presented. We illustrate some results from control theory for discrete delayed equations, perturbed linear problems for discrete equations, results concerning the structure of solutions of delayed differential equations, results of orthogonal polynomials, and adescription of some numerical investigations in discrete least-squares and collocation methods for numerical solution of a boundary value and eigenvalue problems. Some of accompanying mathematical activities are mentioned as well.

Keywords: no keywords

Published: June 30, 2008  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ruzickova, M. (2008). Discrete and Differential Equations in Applied Mathematics. Communications - Scientific Letters of the University of Zilina10(2), 72-78. doi: 10.26552/com.C.2008.2.72-78
Download citation

References

  1. BACOVA, B., DOROCIAKOVA, B.: Oscillation of Nonlinear Differential Systems with Retarded Arguments, Czechoslovak Math. Journal 55 (2005), no. 1, 255-262. Go to original source...
  2. BACOVA, B., OLACH, R.: Oscillation of Nonlinear Delay Integro-differential Equations, Tatra Mount. Math. Publ., in press.
  3. BOICHUK, A.: Perturbed Predholm BVP's for Systems of Delay Differential Equations, Equadiff 2003, World Sci. Publ., Hackensack, NJ, 2005, 1033-1035. Go to original source...
  4. BOICHUK, A., KOROSTIL, I., FECKAN, M.: Bifurcation Conditions of Solutions for Abstract Wave Equations, Differ. Equ. 43 (2007), No. 4, 495-502; translation from Differ. Uravn. 43 (2007), no. 4, 481-487. Go to original source...
  5. BOICHUK, A., RUZICKOVA, M.: Solutions Bounded on the Whole Line for Perturbed Difference Systems, Elaydi, Saber (ed.) et al., Proc. of the 8th International Conference on Difference Equations and Appli¬cations, Masaryk University, Brno, Czech Republic, Boca Raton, FL: Chapman & Hall/CRC. (2005), 51-59. Go to original source...
  6. BOICHUK, A., SAMOILENKO, M.: Generalized Inverse Operators and Fredholm Boundary Value Problems, VSP, Utrecht-Boston (2004). Go to original source...
  7. CELKO, V., GULDAN, M., MARCOKOVA, M.: On Jacobi Polynomials, Proc. of 5th Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, Nemecka 2005 (2005), 45-49.
  8. DIBLIK, J., KHUSAINOV, D.: Representation of Solutions of Discrete Delayed System x(k + 1) = Ax(k) + Bx(k - m) + f(k) with Commutative Matrices, J. Math. Anal. Appl. 318 (2006), 63-76. Go to original source...
  9. DIBLIK, J., KHUSAINOV, D., RUZICKOVA, M.: Controllability of Linear Discrete Systems with Constant Coefficients and Pure Delay, SIAM J. Control Optim, in press.
  10. DIBLIK, J., KUDELCIKOVA, M.: Inequalities for Positive Solutions of the Equation y(t) = - (a0 + a1/t) x(t - τ1) - (b0 + b1/t) x(t - τ2), Stud. Univ. Zilina Math. Ser. 17 (2003), no. 1, 27-46.
  11. DIBLIK, J., KUDELCIKOVA, M.: Inequalities for the Positive Solutions of the Equation y(t) = - ∑ n i=1 (ai + bi/t)y(t - τ2), Differential and Difference Equations and Applications, Hindawi Publ. Corp., New York, 2006, 341-350.
  12. DIBLIK, J., KUDELCIKOVA, M.: Nonoscillating Solutions of the Equation x(t) = -(a + b/t)x(t - &tau), Stud. Univ. Zilina Math. Ser. 15 (2002), no. 1, 11-24.
  13. DIBLIK, J., KUDELCIKOVA, M.: Two Classes of Asymptotically Non-comparable Positive Solutions of the Equation y(t) = - f(t, yt), (Submitted.)
  14. DIBLIK, J., RUZICKOVA, I., RUZICKOVA, M.: A General Version of the Retract Method for Discrete Equations, Acta Math. Sin. 23 (2007), no. 2, 341-348. Go to original source...
  15. DIBLIK, J., RUZICKOVA, M.: Asymptotic Behavior of Solutions and Positive Solutions of Differential Delayed Equations, Funct. Differ. Equ. 14 (2007), no. 1, 83-105.
  16. DIBLIK, J., RUZICKOVA, M.: Convergence of the Solutions of the Equationy y(t) = β(t)[y(t - &delta) - y(t - &tau)] in the Critical Case, J. Math. Anal. Appl. 331 (2007), 1361-1370. Go to original source...
  17. DIBLIK, J., RUZICKOVA, M.: Existence of Positive Solutions of a Singular Initial Problem for a Nonlinear System of Differential Equations, Rocky Mountain J. Math. 34 (2004), 923-944. Go to original source...
  18. DIBLIK, J., RUZICKOVA, M.: Exponential Solutions of Equation y(t) = β(t)[y(t - &delta) - y(t - &tau)], J. Math. Anal. Appl. 294 (2004), no. 1, 273-287. Go to original source...
  19. DIBLIK, J., RUZICKOVA, M.: Inequalities for Solutions of Singular Initial Problems for Caratheodory Systems via Wazewski's Principle, Nonlinear Anal., (2007), doi: 10.1016/j.na.2007.11.006, in press. Go to original source...
  20. DIBLIK, J., RUZICKOVA, M., VACLAVIKOVA, B.: A Retract Principle on a Time scale, Stud. Univ. Zilina Math. Ser. 18 (2004), no. 1, 37-44.
  21. DIBLIK, J., VACLAVIKOVA, B.: Bounded Solutions of Discrete Equations on Discrete Real Time Scales, Funct. Differ. Equ. 14 (2007), no. 1, 67-82.
  22. HANUSTIAKOVA, E., OLACH, R.: Asymptotic and Oscillatory Properties of Neutral Differential Systems, Stud. Univ. Zilina Math. Ser. 19 (2005), no. 1, 9-18.
  23. HANUSTIAKOVA, E., OLACH, R.: Nonoscillatory Bounded Solutions of Neutral Differential Systems, Nonlinear Anal., http://dx.doi.org/10.1016/j.na.2007.01014, in press.
  24. HANUSTIAKOVA, E., OLACH, R.: On Dynamics of Certain Economic Models, Komunikacie 4 (2005), 37-40. Go to original source...
  25. HANUSTIAKOVA, E., OLACH, R., SVANOVA, M.: Existence of Positive Periodic Solutions of Functional Differential Equations, Tatra Mount. Math. Publ., in press.
  26. KOVACIK, O.: On the Lebesgue Spaces and Spaces of Bounded q-variation, Tatra Mount. Math. Publ. 34 (2006), 189-200.
  27. KOVAClK, O., RAKOSNIK, J.: On Spaces Lp(x) and Wk,p(x), Czechoslovak Math. Journal 41 (1991), 592-618. Go to original source...
  28. LANGEROVA, M.: Solvability Conditions of Boundary Value Problems for Second Order Nonlinear Differential Systems, Tatra Mount. Math. Publ, in press.
  29. LANGEROVA, M., SHOVKOPLYAS, T.: Conditions for the Existence of a Solution of a Noether Boundary-value Problem for a Second-order System, Neliniini Kolyvannya 9, No. 3 (2006), 368-375 (English translation in: Nonlinear Oscillations: www.springer.com). Go to original source...
  30. MARCOKOVA, M., STANCEK, V.: On Polynomials Orthogonal in a Finite (Symmetric) Interval, Acta Ma-thematica 9 (2006), 209-214.
  31. MIHALY, T., Oscillations of Three-dimensional Differential Systems of Neutral Type, Nonlinear Anal. 66 (2007), no. 9, 2053-2063. Go to original source...
  32. OLACH, R.: Oscillation and Nonosdilation of First Order Nonlinear Delay Differential Equations, Act. Math. Universitatis Ostraviensis 12 (2004), 41-47.
  33. OLACH, R., SVANOVA, M.: Asymptotic Properties of Nonlinear Delay Differential Equations, Inter. Conf. APLIMAT 2007, Bratislava, (2007), 257-263.
  34. TAYLOR, M. A., WINIGATE, B. A., VINCENT, R. E.: An Algorithm for Computing Fekete Points in the Triangle, Siam J. Numer. Anal. 38/5 (2000), 1707-1720. Go to original source...
  35. VACLAVIKOVA, B.: Bounded Solutions of Dynamic Equations on Combined Time Scales, Tatra Mount. Math. Publ., in press.
  36. ZITNAN, P.: A Stable Discrete Least-squares Method for Membrane Eigenvalue Problems, Computers Math. Applic. (Submitted.)
  37. ZITNAN, P.: Discrete Least-squares Method for the Poisson Problems on Standard 2D Domains (in preparation).

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.