Communications - Scientific Letters of the University of Zilina 2010, 12(1):5-11 | DOI: 10.26552/com.C.2010.1.5-11

Applications of the Fractional Calculus: On a Discretization of Fractional Diffusion Equation in One Dimension

Tomas Kisela1
1 Institute of Mathematics, Brno University of Technology, Brno, Czech Republic

The paper discusses the problem of classical and fractional diffusion models. It is known that the classical model fails in heterogeneous structures with locations where particles move at a large speed over a long distance. If we replace the second derivative in the space variable in the classical diffusion equation by a fractional derivative of order less than two, we obtain the fractional diffusion equation (FDE) which is more useful in this case. In this paper we introduce a discretization of FDE based on the theory of the difference fractional calculus and we sketch a basic numerical scheme of its solution. Finally, we present some examples comparing classical and fractional diffusion models.

Keywords: no keywords

Published: March 31, 2010  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kisela, T. (2010). Applications of the Fractional Calculus: On a Discretization of Fractional Diffusion Equation in One Dimension. Communications - Scientific Letters of the University of Zilina12(1), 5-11. doi: 10.26552/com.C.2010.1.5-11
Download citation

References

  1. ATICI, F. M., ELOE, P. W.: Initial Value Problems in Discrete Fractional Calculus, Proc of the Am Math Soc 137, 2008, pp. 981-989. Go to original source...
  2. BENSON, D. A.: The Fractional Advection-Dispersion Equation: Development and Application, 1998, p.144, University of Nevada, Reno, Ph.D. thesis.
  3. BENSON, D. A., WHEATCRAFT, S. W., MEERSCHAERT, M. M.: The Fractional-order Governing Equation of Levy Motion, Water Resources Research 36, 2000, pp. 1413-1423. Go to original source...
  4. BOHNER, M., PETERSON, A.: Dynamic equations on time scales: An introduction with applications, Birkhauer Boston Inc., Boston, MA, 2001. Go to original source...
  5. CERMAK, J., NECHVATAL, L.: On (q,h)-Analogue of Fractional Calculus, J Nonlin Math Phys - to appear.
  6. DIETHELM, K., et al.: Algorithms for the Fractional Calculus: A Selection of Numerical Methods, Comput Methods Appl Mech Engrg 194, 2005, pp. 743-773. Go to original source...
  7. GREY, H. L., ZHANG, N. F.: On a New Definition of the Fractional Difference, Math Comp 50, 1988, pp. 513-529. Go to original source...
  8. HEYMANS, N., PODLUBNY, I.: Physical Interpretation of Initial Conditions for Fractional Differential Equations with Riemann-Liouville Fractional Derivatives, Rheologica Acta 45 2005, 765-771. Go to original source...
  9. HILFER, R.: Applications of Fractional Calculus in Physics, Singapore: World Scientific 2000, p. 463. Go to original source...
  10. KILBAS, A. A., SRIVASTAVA, H. M., TRUJILLO, J. J.: Theory and Applications of Fractional Differential Equations, John van Mill, Netherlands, Elsevier, 2006, p. 523, ISBN 978-0-444-51832-3.
  11. MILLER, K. S., ROSS, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993.
  12. MILLER, K. S., ROSS, B.: Fractional Difference Calculus, Proc Int Symp Unival Funct, Frac Calc Appl, Koriyama, Japan, May (1988) 139-152; Ellis Horwood Ser Math Appl, Horwood, Chichester, 1989.
  13. OLDHAM, K. B., SPANIER, J.: The Fractional Calculus, London: Academic Press, 1974, p. 225
  14. PODLUBNY, I.: Fractional Differential Equations. United States: Academic Press, 1999, p. 340, ISBN 0-12-558840-2.
  15. PODLUBNY, I.: Matrix Approach to Discrete Fractional Calculus, Fractional Calculus and Applied Analysis 3, 2000, pp. 359-386.
  16. PODLUBNY, I., et al.: Matrix Approach to Discrete Fractional Calculus II: Partial Fractional Differential Equations, J of Computational Physics 228, 2009, pp. 3137-3153. Go to original source...
  17. SCHUMER, R., et al.: Eulerian Derivation of the Fractional Advection-Dispersion Equation, J. of Contaminant Hydrology 48, 2001, pp. 69-88. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.