Communications - Scientific Letters of the University of Zilina 2010, 12(1):44-49 | DOI: 10.26552/com.C.2010.1.44-49

Mathematical Models for Acoustic Spectra Simulation

Peter Hockicko1, Peter Bury1, Peter Sidor1, Stanislav Jurecka2, Igor Jamnicky1
1 Department of Physics, Faculty of Electrical Engineering, University of Zilina, Slovakia
2 Department of Engineering Fundamentals, Faculty of Electrical Engineering, University of Zilina, Slovakia

The experimentally obtained acoustic spectra of some investigated materials; particularly the ion conductive glasses and MOS (metal-oxide-semiconductor) structures are analyzed using suitable theoretical models and mathematical procedure to fit the experimental data. The acoustic spectra of ion conductive glasses can reflect the basic features of the relaxation and transport processes of the mobile ions. The results obtained form acoustic deep level transient spectroscopy (A-DLTS) spectra of MOS structures are used for the characterization of deep centers and determination of some of their physical parameters. Suitable theoretical model and mathematical description of acoustic spectra are necessary to understand both the principle of the ionic hopping motion and relaxation processes connected with the mobility of conductive ions including the role of their composition and the distribution of interface traps.

Keywords: no keywords

Published: March 31, 2010  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hockicko, P., Bury, P., Sidor, P., Jurecka, S., & Jamnicky, I. (2010). Mathematical Models for Acoustic Spectra Simulation. Communications - Scientific Letters of the University of Zilina12(1), 44-49. doi: 10.26552/com.C.2010.1.44-49
Download citation

References

  1. ROLING, B., HAPPE, A., INGRAM, M. D., FUNKE, K: J. Phys. Chem. B 103 (1999) 4122 Go to original source...
  2. CHARNAZA, E. V., BORISOV, B. F., KULESHOV, A. A.: Proc. World Congress on Ultrasonics, Berlin (1995) 483
  3. FUNKE, K.: Solid State Ionics 94 (1997) 27 Go to original source...
  4. BURY, P., HOCKICKO, P., JURECKA, S., JAMNICKY, M.: Physica Status Solidi (c) 11 (2004) 2888 Go to original source...
  5. LANG, D. V.: Appl. Phys. 45 (1974) 3023 Go to original source...
  6. TABIB-AZAR, M., HAJJAR, F.: IEEE Trans. Electron Dev. 36 (1989) 1189 Go to original source...
  7. BURY, P., JAMNICKY, I., DURCEK, J.: Physica Status Solidi (a) 126 (1991) 151 Go to original source...
  8. ALMOND, D. P., WEST, A. R.: Solid State Ionics 26 (1988) 265 Go to original source...
  9. CARINI, G., CUTRONI, M., FEDERICO, M., GALLI, G., TTIPODO, G.: Physical Review B 30 (1984) 7219 Go to original source...
  10. BORJESSON, L.: Physical Review B 36 (1987) 4600 Go to original source...
  11. ROLING, B., INGRAM, M. D.: Physical Review B 57 (1998) 14192 Go to original source...
  12. BURY, P., JAMNICKY, I., HOCKICKO, P.: Communications No. 2, (2003) 5 Go to original source...
  13. PINCIK, E., KOBAYASHI, H., RUSNAK, J., TAKAHASHI, M., BRUNNER, R., JERGEL, M., MORALES-ACEVEDO, A., ORTEGA, L., KAKOS, J.: Applied Surface Science 252 (2006) 7713 Go to original source...
  14. HOCKICKO, P., BURY, P., JURECKA, S., JAMNICKY, M., JAMNICKY, I.: Advances in Electrical and Electronic Engineering, Vol. 3, No. 2 (2004) 243
  15. BURY, P., HOCKICKO, P., JAMNICKY, M.: Advanced Materials Research 39-40 (2008) 111 Go to original source...
  16. JAMNICKY, M., ZNASIK, P., TUNEGA, D., INGRAM, M. D.: J. Non-Cryst. Solids 185 (1995) 151 Go to original source...
  17. ZNASIK, P., JAMNICKY, M.: Solid State Ionics 92 (1996) 145 Go to original source...
  18. ZNASIK, P., JAMNICKY, M.: Solid State Ionics 95 (1997) 207 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.