Communications - Scientific Letters of the University of Zilina 2010, 12(1):55-57 | DOI: 10.26552/com.C.2010.1.55-57
Experimental Behavior of Jurik's Nearest Point Approach Algorithm for Linear Programming
- 1 Institute of Mathematics and Computer Science, Banska Bystrica, Slovakia
T. Jurik recently proposed a new algorithm for solving linear programming problems. The algorithm is iterative, finding points on the boundary of the problem's convex polyhedron. Global convergence of the algorithm is an open question. Jurik benchmarked the performance of the algorithm on standard sets of linear optimization problems, and the algorithm was on par with commonly used ones, and sometimes beating the simplex method by a wide margin. In this note we concentrate on testing local behavior of the algorithm near a vertex in the three dimensional Euclidean space. Our experiments indicate that the behavior of the algorithm is mostly very fast, but there appear to be cases where its behavior is worse than the simplex method.
Keywords: no keywords
Published: March 31, 2010 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- JURIK, T.: A new efficient two-path algorithm for linear programming problems, Journal of Applied Mathematics, Statistics and Informatics, 4 (2008), pp. 129-138
- JURIK, T.: Contributions to the Algorithms of Linear Programming, Ph.D. thesis, Comenius University, 2009
- http://en.wikipedia.org/wiki/Linear_programming
- http://en.wikipedia.org/wiki/Simplex_algorithm
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.