Communications - Scientific Letters of the University of Zilina 2010, 12(2):10-13 | DOI: 10.26552/com.C.2010.2.10-13

A Theoretical Study of the Temperature Sensor Based on the LP01-LP02 Intermodal Interference in Optical Fiber with a Liquid Core

Ivan Martincek1, Dusan Pudis1
1 Department of Physics, Faculty of Electrical Engineering, University of Zilina

We theoretically propose the temperature sensor based on optical fiber consisting of fused silica and core of 2.5 μm radius filled in with toluene. In such an optical fiber the intermodal interference of modes LP01-LP02 shows a characteristic dependence of the equalization wavelength λ0 on temperature. The optical fiber sensor was theoretically investigated in the temperature range of 0-40 °C, where the equalization wavelength λ0 for modes LP01-LP02 changes from 1284.2 nm to 844.1 nm. Such considerable wavelength change with temperature favors this sensor for temperature measurements with sensitivity better than 0.1 °C.

Keywords: no keywords

Published: June 30, 2010  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Martincek, I., & Pudis, D. (2010). A Theoretical Study of the Temperature Sensor Based on the LP01-LP02 Intermodal Interference in Optical Fiber with a Liquid Core. Communications - Scientific Letters of the University of Zilina12(2), 10-13. doi: 10.26552/com.C.2010.2.10-13
Download citation

References

  1. KUMAR, D. SENGUPTA, S., GHORAI, S.K.: Meas. Sci. Technol. 19, 2008, p. 065201. Go to original source...
  2. BOCK, W.J., EFTIMOV, T.A.: Opt. Lett. 18, 1993, pp. 1979-1981. Go to original source...
  3. LAYTON, M.R., BUCARO, J.A.: Appl. Opt. 18, 1979, pp. 666-670. Go to original source...
  4. SPAJER, M.: Opt. Lett. 13, 1988, pp. 239-241. Go to original source...
  5. EFTIMOV, T.A., BOCK, W.J.: J. Lightwave Technol. 11, 1993, pp. 2150-2156. Go to original source...
  6. TUREK, I., MARTINCEK, I., STRANSKY, R.: Opt. Eng. 39, 2000, pp. 1304-1309. Go to original source...
  7. SNYDER, A., LOVE, J.: Optical waveguide theory, Chapman and Hall, London, 1983.
  8. SAMOC, A.: J. Appl. Phys. 94, 2003, pp. 6167-6174. Go to original source...
  9. MALITSON, I.H.: J. Opt. Soc. Am. 55, 1965, pp. 1205-1209. Go to original source...
  10. WEBER, M.J.: Handbook of Optical Materials, CRC Press, New York, 2003.
  11. NIKOGOSYAN, D.N.: Properties of Optical and Laser-Related Materials. A Handbook, Wiley, Chichester, 1997.
  12. BOUCOUVALAS, A.C., ROBERTSON, S.C.: Electron. Lett. 23, 1987, pp. 215-216. Go to original source...
  13. MARTINCEK, I., KACIK, D., TUREK, I., PETERKA, P.: Optik 115, 2004, pp. 86-88. Go to original source...
  14. TUREK, I., MARTINCEK, I., KACIK, D., PETERKA, P., GRONDZAK, K.: Recent Res. Devel. Optical Eng. 5, 2003, pp. 61-81.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.