Communications - Scientific Letters of the University of Zilina 2012, 14(3):24-31 | DOI: 10.26552/com.C.2012.3.24-31

Meshless Modelling of Laminate Mindlin Plates under Dynamic Loads

Milan Zmindak1, Daniel Riecky1
1 Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Zilina, Slovakia

Collocation method and Galerkin method have been dominant in the existing meshless methods. A meshless local Petrov-Galerkin (MLPG) method is applied to solve laminate plate problems described by the Reissner-Mindlin theory for transient dynamic loads. The Reissner-Mindlin theory reduces the original three-dimensional (3-D) thick plate problem to a two-dimensional (2-D) problem. The bending moment and the shear force expressions are obtained by integration through the laminated plate for the considered constitutive equations in each lamina. The weak-form on small subdomains with a Heaviside step function as the test functions is applied to derive local integral equations. After performing the spatial MLS approximation, a system of ordinary differential equations of the second order for certain nodal unknowns is obtained. The derived ordinary differential equations are solved by the Houbolt finite-difference scheme as a time-stepping method.

Keywords: local integral equations, Reissner-Mindlin plate theory, MLS approximation, orthotropic material properties

Published: September 30, 2012  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zmindak, M., & Riecky, D. (2012). Meshless Modelling of Laminate Mindlin Plates under Dynamic Loads. Communications - Scientific Letters of the University of Zilina14(3), 24-31. doi: 10.26552/com.C.2012.3.24-31
Download citation

References

  1. ZHOU, J. X., WANG, X.M, ZHANG, Y.Q., ZHANG, L.: On the Enhancement of Computation and Exploration of Discretization Approaches for Meshless Shape Design Sensitivity Analysis. Struc. Multidisc. Optim, 31, 2006, pp. 96-104. Go to original source...
  2. SAGA, M., VASKO, M.: Stress Sensitivity Analysis of the Beam and Shell Finite Elements. Communications - Scientific Letters of the University of Zilina, 11, 2, 2009, pp. 5-12. Go to original source...
  3. SAGA, M., KOPAS, P., VASKO, M.: Some Computational Aspects of Vehicle Shell Frames Optimization Subjected to Fatigue Life. Communications - Scientific Letters of the University of Zilina, 12, 4, 2010, pp. 73-79. Go to original source...
  4. WANG, J., HUANG, M.: Boundary Element Method for Orthotropic Thick Plates. Acta Mechanica Sinica, 7, 1991, pp. 258-266. Go to original source...
  5. WANG, J.; SCHWEIZERHOF, K.: Study on Free Vibration of Moderately Thick Orthotropic Laminated Shallow Shells by Boundary-domain Elements. Applied Mathematical Modelling, 20, 1996, pp. 579-584. Go to original source...
  6. REDDY, J. N.: Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press, Boca Raton, 1997.
  7. QIAN, L. F., BATRA, R. C., CHEN, L. M.: Analysis of Cylindrical Bending Thermoelastic Deformations of Functionally Graded Plates by a Meshless Local Petrov-Galerkin Method. Computational Mechanics, 33, 2004, 263-273. Go to original source...
  8. BESKOS, D. E.: Static and Dynamic Analysis of Shells. In Boundary Element Analysis of Plates and Shells. Springer-Verlag : Berlin, 1991, pp. 93-140. Go to original source...
  9. PROVIDAKIS, C. P., BESKOS, D. E.: Dynamic Analysis of Plates by boundary Elements. Applied Mechanics Reviews ASME, 52, 1999, pp. 213-236. Go to original source...
  10. VAN DER WEEN, F.: Application of the Boundary Integral Equation Method to Reissner's Plate Model. Intern. J. for Numerical Methods in Engineering, 18, 1982, pp. 1-10. Go to original source...
  11. ANTES, H.: Static and Dynamic Analysis of Reissner-Mindlin Plates. In: Boundary Element Analysis of Plates and Shells (Beskos DE ed.). Springer-Verlag : Berlin, 1991, pp. 312-340. Go to original source...
  12. WEN, P. H., ALIABADI, M. H.: Boundary Element Frequency Domain Formulation for Dynamic Analysis of Mindlin Plates. In: Boundary Element Techniques (Aliabadi MH, Selvadurai APS, Tan CL, eds.), 2005, pp. 35-42.
  13. WANG, J., HUANG, M.: Boundary Element Method for Orthotropic Thick Plates. Acta Mechanica Sinica, 7, 1991, pp. 258-266. Go to original source...
  14. KOMPIS, V., DEKYS, V.: Analysis of Local Stress and Displacement Fields in Contact of 3D Bodies with Curved Surfaces, Mechanical Eng. J., 54, pp. 5-6, 2003.
  15. ZMINDAK, M., RIECKY, D., SOUKUP, J.: Failure of Composites with Short Fibers. Communications - Scientific Letters of the University of Zilina, 4/2010. Go to original source...
  16. BELYTSCHKO, T., KROGAUZ, Y., ORGAN, D., FLEMING, M., KRYSL, P.: Meshless Methods; an Overview and Recent Developments. Comp. Meth. Appl. Mech. Engn., 1996, 139, pp. 3-47. Go to original source...
  17. ATLURI, S. N.: The Meshless Method, (MLPG) for Domain & BIE Discretizations, Tech Science Press, 2004.
  18. KRYSL, P.; BELYTSCHKO, T.: Analysis of Thin Plates by the Element-Free Galerkin Method. Computational Mechanics, 17, 1996, pp. 26-35. Go to original source...
  19. KRYSL, P.; BELYTSCHKO, T.: Analysis of Thin Shells by the Element-Free Galerkin Method. Int. J. Solids and Structures, 33 1996, pp. 3057-3080. Go to original source...
  20. NOGUCHI, H., KAWASHIMA, T., MIYAMURA, T.: Element Free Analyses of Shell and Spatial Structures, Int. J. for Numerical Methods in Engineering, 47, 2000, pp. 1215-1240. Go to original source...
  21. LONG, S.Y., ATLURI, S.N., A: Meshless Local Petrov Galerkin Method for Solving the Bending Problem of a Thin Plate. Computer Modeling in Engineering & Sciences, 3, 2002, pp. 11-51.
  22. SLADEK, J., SLADEK, V., MANG, H.A.: Meshless Formulations for Simply Supported and Clamped Plate Problems. Int. J. for Numerical Methods in Engineering, 55, 2002, pp. 359-375. Go to original source...
  23. SLADEK, J., SLADEK, V., MANG, H.A.: Meshless LBIE Formulations for Simply Supported and Clamped Plates under Dynamic Load, Computers & Structures, 81, 2003, pp. 1643-1651. Go to original source...
  24. JARAK, T.; SORIC, J.; HOSTER, J.: Analysis of Shell Deformation Responses by the Meshless Local Petrov-Galerkin (MLPG) approach. CMES: Computer Modeling in Engineering & Sciences, 18, 3, 2007, pp. 235-246.
  25. REDDY, J.N., MIRAVETE, A.: Practical Analysis of Composite Laminates. CRC Press, 1995.
  26. LEKHNITSKII, S.G.: Theory of Elasticity of an Anisotropic Elastic Body. Holden Day, San Francisco, also Mir Publishers, Moscow, 1981.
  27. LANCASTER, P., SALKAUSKAS, T.: Surfaces Generated by Moving Least Square Methods. Math. Comput., 37, 1981, pp. 141-158. Go to original source...
  28. SLADEK, J., SLADEK, V., MANG, H.A.: Meshless Formulations for Simply Supported and Clamped Plate Problems. Int. J. Num. Meth. Engn., 55, 2002, pp. 359-375. Go to original source...
  29. BATHE, K.J.: Finite Element Procedures. Prentice - Hall, Inc., 1996.
  30. RIECKY, D., ZMINDAK, M., NOVAK, P.: Transient Dynamic Analysis of Rectangular Orthotropic Composite Plates. In: Proc. of 9th European Conference of Young Research and Scientific Workers, TRANSCOM 2011, Zilina, 2011.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.