Communications - Scientific Letters of the University of Zilina 2014, 16(1):15-20 | DOI: 10.26552/com.C.2014.1.15-20

PDMS-Based Nanoimprint Lithography for Photonics

Dusan Pudis1, Daniel Jandura1, Peter Gaso1, Lubos Suslik1, Pavol Hronec2, Ivan Martincek1, Jaroslav Kovac2, Sofia Berezina1
1 Department of Physics, University of Zilina, Slovakia
2 Institute of Electronics and Photonics, Slovak University of Technology, Bratislava, Slovakia

Implementation of planar surface photonic crystal (PhC) structures leads to improvement of optical properties of optoelectronic devices. Application of such structures can be attractive for overall and local enhancement of light from patterned areas of the light emitting diode surface and for lightwave-guiding devices. We present techniques useful for PhC patterning and for patterning of different optic structures in surface of new promising material polydimethylsiloxane (PDMS). Paper proposes nanoimprint technology for fabrication of PhC in the surface of thin PDMS membranes for possible application in light emitting diodes. By PDMS patterning and its positioning on the device surface one can achieve original optical properties of optoelectronic devices. We also present new technique for fabrication of surface-relief fiber Bragg grating (SR FBG) based on PDMS waveguide.

Keywords: polydimethysiloxane, nanoimprint lithography, photonic crystal

Published: February 28, 2014  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pudis, D., Jandura, D., Gaso, P., Suslik, L., Hronec, P., Martincek, I., Kovac, J., & Berezina, S. (2014). PDMS-Based Nanoimprint Lithography for Photonics. Communications - Scientific Letters of the University of Zilina16(1), 15-20. doi: 10.26552/com.C.2014.1.15-20
Download citation

References

  1. JOANNOPOULOS, J. D., MEADE, R. D., WINN, J. N.: Photonic Crystals - Molding the Flow of Light, Princeton University Press, Princeton 1995.
  2. LOURTIOZ, J. M.: Photonic Crystals - Towards Nanoscale Photonic Devices, Springer-Verlag Berlin Heidelberg, Berlin 2008.
  3. KIM, S. H., LEE, K. D., KIM, J. Y., KWON, M. K., PARK, S. J.: Nanotechnology 18, 2007, p. 055306. Go to original source...
  4. ALTUG, H., VUCKOVIC, J.: Opt. Express 13, 2005, pp. 8819-8828. Go to original source...
  5. LONCAR, M., NEDELJKOVIC, D., DOLL, T., VUCKOVIC, J., SCHERER, A., PEARSALL, T. P.: Appl. Phys. Lett. 77, 2000, pp. 1937-1939. Go to original source...
  6. FUJII, T., GAO, Y., SHARMA, R., HU, E. L., DENBAARS, S. P., NAKAMURA, S.: Appl. Phys. Lett. 84, 2004, pp. 855-7. Go to original source...
  7. KRAUSS, T. F.: Phys. Stat. Sol. 197, 2003, pp. 688-702. Go to original source...
  8. VALOUCH, S., SIEBER, H., KETTLITZ, S., ESCHENBAUM, C., HOLLENBACH, U., LEMMER, U.: Opt. Express 20, 2012, pp. 28855-28861. Go to original source...
  9. SKRINIAROVA, J., PUDIS, D., MARTINCEK, I., KOVAC, J., TARJANYI, N., VESELY, M., TUREK, I.: Microelectron. J. 38, 2007, pp. 746-749. Go to original source...
  10. PUDIS, D., SUSLIK, L., SKRINIAROVA, J., KOVAC, J., MARTINCEK, I., KOVAC JR., J., HASCIK, S., KUBICOVA, I., NOVAK, J., VESELY, M.: Optics and Laser Technol. 43, 2011, pp. 917-921. Go to original source...
  11. YANG, R., TANG, W., HAO, Y.: Opt. Express 19, 2011, pp. 12348-12355. Go to original source...
  12. PUDIS, D., KUBICOVA, I., GASO, P., JANDURA D.: Technolog 1, 2012, pp. 13-15.
  13. MELTZ, G., MOREY, W. W., GLENN, W. H.: Opt. Lett., Vol. 14, 1989, pp. 823-825. Go to original source...
  14. OTHONOS, A., KALLI, K.: Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House, Boston, 1999. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.