Communications - Scientific Letters of the University of Zilina 2017, 19(3):21-25 | DOI: 10.26552/com.C.2017.3.21-25

Analysis of Photoluminiscence in the NCSI-DMA System

Stanislav Jurecka1, Kentaro Imamura2, Taketoshi Matsumoto2, Hikaru Kobayashi2
1 Institute of Aurel Stodola, University of Zilina, Liptovsky Mikulas, Slovakia
2 Institute of Scientific and Industrial Research, Osaka University and CREST, Japan Science and Technology Agency, Ibaraki, Japan

Silicon nanocrystalline particles (ncSi) were fabricated from the Si swarf using the beads milling method. Observed photoluminiscence spectra (PL) of the ncSi in hexane with the dimethylanthracene molecules (DMA) show photoluminescence peaks at energies of 2.55, 2.75, 2.92, and 3.09 eV. The shape of PL spectra corresponds to the vibronic structure of adsorbed DMA molecules. The PL intensity of the ncSi-DMA system increases by ~3000 times by adsorption of DMA on Si nanoparticles. The PL enhancement results from an increase in absorption probability of incident light by DMA caused by adsorption on the surface of ncSi. Theoretical model of the PL experiment was constructed and resulting model parameters were used in analysis of possible PL transitions and charge transfer processes.

Keywords: semiconductor; silicon nanocrystal; DMA; photoluminiscence

Published: September 30, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Jurecka, S., Imamura, K., Matsumoto, T., & Kobayashi, H. (2017). Analysis of Photoluminiscence in the NCSI-DMA System. Communications - Scientific Letters of the University of Zilina19(3), 21-25. doi: 10.26552/com.C.2017.3.21-25
Download citation

References

  1. EPUR, R., MINARDI, L. K., DATTA, M., CHUNG, S. J., KUMTA, P. N.: A Simple Facile Approach to Large Scale Synthesis of High Specific Surface Area Silicon Nanoparticles. Journal of Solid State Chemistry, 208, 93-98, 2013. Go to original source...
  2. BULUTAY, C., OSSICINI, S.: Electronic and Optical Properties of Silicon Nanocrystals. Pavesi, L., Turan, R. (Eds), Silicon Nanocrytals, Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, 2010. Go to original source...
  3. EROGBOGBO, F., LIN, T., TUCCIARONE, P. M., LAJOIE, K. M., LAI, L., LATKI, G. D., PRASAD, P. N., SWIHART, M. T.: On-Demand Hydrogen Generation Using Nanosilicon: Splitting Water without Light, Heat, or Electricity. Nano Letters, 13, 451-456, 2013. Go to original source...
  4. O'FARRELL, N., HOULTON, A., HORROCKS, B. R.: Silicon Nanoparticles: Applications in Cell Biology and Medicine. International Journal of Nanomedicine, 1, 451-472, 2006. Go to original source...
  5. MATSUMOTO, T., MAEDA, M., FURUKAWA, J., KIM, W-B., KOBAYASHI, H.: Si Nanoparticles Fabricated from Si Swarf by Photochemical Method. Journal of Nanoparticle Research, 16, 2240-1-7, 2014. Go to original source...
  6. MAEDA, M., IMAMURA, K., MATSUMOTO, T., KOBAYASHI, H.: Fabrication of Si Nanoparticles from Si Swarf and Application to Solar Cells. Applied Surface Science, 312, 39-42, 2014. Go to original source...
  7. MAKIMURA, T., KUNII, Y., ONO, N., MURAKAMI, K.: Silicon Nanoparticles Embedded in SiO2 Films with Visible Photoluminescence. Applied Surface Science, 127-129, 388-92, 1988. Go to original source...
  8. WATANABE, K., SAWADA, K., KOSHIBA, M., FUJII, M., HAYASHI, S.: Photo-luminescence Decay Dynamics of Si Nanoparticles Prepared by Pulsed Laser Ablation. Applied Surface Science, 197-198, 635-638, 2002. Go to original source...
  9. LACONA, F., BONGIORNO, C., SPINELLA, C., BONINELLI, S., PRIOLO, F.: Formation and Evolution of Luminescent Si Nanoclusters Produced by Thermal Annealing of SiOx Films. Journal of Applied Physics, 95, 3723-3732, 2004. Go to original source...
  10. SALIVATI, N., AN, Y. Q., DOWNER, M. C., EKERDT, J. G.: Hot-Wire Chemical Vapor Deposition of Silicon Nanoparticles on Fused Silica. Thin Solid Films, 517, 3481-3483, 2009. Go to original source...
  11. FAUCHET, P. M., RUAN, J., CHEN, H., PAVESI, L., NEGRO, L. D., CAZZANELI, M., ELLIMAN, R. G., SMITH, N., SAMOC, M., LUTHER-DAVIES, B.: Optical Gain in Different Silicon Nanocrystal Systems. Optical Materials, 27, 745-749, 2005. Go to original source...
  12. MORALES-SANCHEZ, A., LEYVA, K. M., ACEVES, M., BARRETO, J., DOMINGUEZ, C., LUNA-LOPEZ, J. A., CARRILO, J., PEDRAZA, J.: Photoluminescence Enhancement through Silicon Implantation on SRO-LPCVD Films. Materials Science and Engineering: B, 174, 119-122, 2010. Go to original source...
  13. CHOI, B. J., LEE, J. H., YATSUI, K., YANG, S. C.: Preparation of Silicon Nanoparticles for Device of Photoluminescence. Surface and Coatings Technology, 201, 50036, 2007. Go to original source...
  14. OHNO, K.: Simple Calculations of Franck-Condon Factors for Electronic Transition Bands of Polyacenes. Chemical Physics Letters, 53, 571-577, 1978. Go to original source...
  15. JURECKA, S.: Theoretical Model of the Physical System: Optimization by the Genetic Algorithm. Dritsas, I. (Ed.), Stochastic Optimization - Seeing the Optimal for the Uncertain, InTech, Vienna, 2011. Go to original source...
  16. MULLEROVA, J., SUTTA, P., JURECKA, S.: Thin Film Silicon in Photovoltaics: The Role of Structure and Microstructure. Communications - Scientific Letters of the University of Zilina, 8(1), 5-9, 2006. Go to original source...
  17. DEVORE, J. L.: Probability and Statistics for Engineering and the Sciences, 8th ed. Cengage Learning, Boston, 2011.
  18. HUMMEL, R. E., WISSMANN, P.: Handbook of Optical Properties: Optics of Small Particles, Interfaces and Surfaces. CRC Press LLC, Boca Raton, 1997.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.