Communications - Scientific Letters of the University of Zilina 2017, 19(3):77-82 | DOI: 10.26552/com.C.2017.3.77-82

Lithium Niobate-Based Integrated Photonics Utilizing Photorefractive Effect

Norbert Tarjanyi1, Daniel Kacik1
1 Department of Physics, Faculty of Electrical Engineering, University of Zilina, Slovakia

Lithium niobate (LiNbO3) is an ideal material with many interesting properties for integrated photonics. Despite the rich set of properties the technology of lithium niobate integrated optics has not evolved as much as integrated optics in III-V semiconductors and silicon photonics. Future applications of LiNbO3 as an integrated optical platform require a technology that can materialize ultracompact and efficient optical circuits on the material. To achieve the goal two possible approaches can be considered: developing of tightly-confined lithium niobate photonic devices and circuits on silicon substrates by hybrid technologies and, developing pure lithium niobate photonic devices employing strong photorefractive effect. The latter approach is in more details discussed in the contribution and concrete examples of practically realized photonic structures are presented.

Keywords: lithium niobate; integrated optics; photonic integrated circuit; photorefractive effect; waveguide

Published: September 30, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Tarjanyi, N., & Kacik, D. (2017). Lithium Niobate-Based Integrated Photonics Utilizing Photorefractive Effect. Communications - Scientific Letters of the University of Zilina19(3), 77-82. doi: 10.26552/com.C.2017.3.77-82
Download citation

References

  1. KACIK, D., et al.: Photonic Crystals: Optical Structures for Advanced Technology. Communications - Scientific Letters of the University of Zilina, 10(2), 25-29, 2008. Go to original source...
  2. HUNSPERGER, R. G.: Integrated Optics: Theory and Technology, Chapter 1. Springer, New York, p. 1-12, 2009.
  3. GEISS, R., et al.: Fabrication of Nanoscale Lithium Niobate Waveguides for Second-Harmonic Generation. Optics Letters, 40(12), 2715-2718, 2015. Go to original source...
  4. JIN, H., et al.: On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits. Physical Review Letters, 113(10), 103601-1-103601-5, 2014. Go to original source...
  5. WOOTEN, E.L., et al.: A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems. IEEE Journal of Selected Topics in Quantum Electronics, 6(1), 69-81, 2000. Go to original source...
  6. SAKAMOTO, T., et al.: Novel Photonic Devices Based on Electro-Optic Modulation Technologies. Journal of the National Institute of Information and Communications Technologies, 53(3), 25-32, 2006.
  7. POBERAJ, G., HU, H., SOHLER, W., GUNTER, P.: Lithium Niobate on Insulator (LNOI) for Micro-Photonic Devices. Laser Photonics Reviews, 6(4), 488-503, 2012. Go to original source...
  8. WEIGEL, P.O., et al.: Lightwave Circuits in Lithium Niobatethrough Hybrid Waveguides with Silicon Photonics.Scientific Reports, 6, 22301, 2016. Go to original source...
  9. GORBACH, A.V., DING, W.: Microfiber-Lithium Niobateon Insulator Hybrid Waveguides for Efficient and Reconfigurable Second-Order Optical Nonlinearity on a Chip. Photonics, 2, 946-956, 2015. Go to original source...
  10. CHEN, L., NAGY, J., REANO, R.M.: Patterned Ion-Sliced Lithium Niobate for Hybrid Photonic Integration on Silicon. Optical Materials Express, 6(7), 2460-2467, 2016. Go to original source...
  11. CHEN, L., CHEN, J., NAGY, J., REANO, R. M.: Highly Linear Ring Modulator from Hybrid Silicon and Lithium Niobate. Optics Express, 23(10), 13255-13264, 2015. Go to original source...
  12. BAZZAN, M., SADA, C.: Optical Waveguides in Lithium Niobate: Recent Developments and Applications. Applied Physics Reviews, 2, 040603-1-040603-25, 2015. Go to original source...
  13. MAILIS, S., et al.: Direct Ultraviolet Writing of Channel Waveguides in Congruent Lithium Niobate Single Crystals. Optics Letters, 28(16), 1433-1435, 2003. Go to original source...
  14. MIZEIKIS, V., et al.: Direct Laser Writing: Versatile Tool for Microfabrication of Lithium Niobate. Journal of Laser Micro/Nanoengineering, 7(3), 345-350, 2012. Go to original source...
  15. PAIPULAS, D., BUIVIDAS, R., JUODKAZIS, S., MIZEIKIS, V.: Local Photorefractive Modification in Lithium Niobate Using Ultrafast Direct Laser Write Technique. Journal of Laser Micro/Nanoengineering, 11(2), 246-252, 2016. Go to original source...
  16. VITTADELLO, L., et al.: Photorefractive Direct Laser Writing, Journal of Physics D: Applied Physics, 49, 125103, 2016. Go to original source...
  17. YEH, P.: Introduction to Photorefractive Nonlinear Optics, Chapter 3. John Wiley & Sons, Inc., New York, p. 82-117, 1993.
  18. TARJANYI, N.: Real-Time Imaging of Grating Formation in LiNbO3:Fe Using Mach-Zehnder Interferometer. Optical Engineering, 49(8), 085602, 2010. Go to original source...
  19. KOGELNIK, H.: Coupled Wave Theory for Thick Hologram Grating. Bell System Technical Journal, 48, 2909-2947, 1969. Go to original source...
  20. TARJANYI, N., KACIK, D., TARJANYIOVA, G.: Light-Induced Microstructures in LiNbO3:Fe Crystal in Photonic Crystal Fibers. Proceeding of SPIE 6588, 658812, 2007. Go to original source...
  21. TARJANYI, N.: Specially Shaped Negative Lens Produced in Lithium Niobate Crystal. Optical Engineering, 53(5), 057104, 2014. Go to original source...
  22. ZILINSKA UNIVERZITA V ZILINE: System of Dioptric Elements from Photorefractive Material (in Slovak). Inventors: TUREK, I., TARJANYI, N., DUBRAVKA, M., G02B 17/00.UV 4988, Industrial property office of the Slovak Republic, 2007.
  23. TARJANYI, N., TUREK, I.: Influence of Surroundings on Photorefractive Effect in Lithium Niobate Crystals. Physica B, 407, 4347-4353, 2012. Go to original source...
  24. TARJANYI, N., KACIK, D.: Fabrication and Evaluation of Photorefractive Vaweguide in LiNbO3:Fe, in Integrated Photonics: Materials, Devices and Applications. Proceeding of SPIE 8069, 80690B, 2011. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.