Communications - Scientific Letters of the University of Zilina 2019, 21(2):58-68 | DOI: 10.26552/com.C.2019.2.58-68

Key Assembling Issues Relating to Mechanical Vibration of Fabricated Rotor of Large Induction Machines

Vladimir Kindl1, Miroslav Byrtus1, Bohumil Skala1, Vaclav Kus1
1 University of West Bohemia, Faculty of Electrical Engineering, RICE, Pilsen, Czech Republic

In many applications, where rotating machines of high power are used, high demands on reliability and safety are laid. Precise manufacturing procedures has to be kept even in case of machines retrofits when e.g. rotors are newly assembled. Even small inaccuracies or misguiding the precise technological procedure can lead to improper running of the machine and it can result in shut-down of complete drive. In case of primary circuits of nuclear power plants, it further means the shut-down of the whole power plant. Consequently, it results in significant financial losses (foregone profit and cost given by problem fixing). The paper presents a methodology of vibration origin investigation in case of large rotating machines which are part of drives like pump, compressors etc. The methodology is based on the detection of undesirable vibration using a diagnostic system on-site and further it uses mathematical modelling of corresponding mechanical parts to reveal the vibration origin. The modelling along with the measurement showed that the detected dangerous vibration is caused by misguided assembling of the rotor of the machine.

Keywords: induction; machine; rotor; vibration; unbalance; assembling

Received: February 4, 2019; Accepted: February 28, 2019; Published: May 24, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kindl, V., Byrtus, M., Skala, B., & Kus, V. (2019). Key Assembling Issues Relating to Mechanical Vibration of Fabricated Rotor of Large Induction Machines. Communications - Scientific Letters of the University of Zilina21(2), 58-68. doi: 10.26552/com.C.2019.2.58-68
Download citation

References

  1. FINLEY, W., LOUTFI, M. SAUER, B. J. Motor vibration problems - Understanding and identifying. In 2013 IEEE-IAS/PCA Cement Industry Technical Conference : proceedings [online]. Orlando, FL, USA, 2013, p. 1-20. Available from: https://doi.org/10.1109/CITCON.2013.6525282 Go to original source...
  2. MISTRY, R., et al. Influencing factors on motor vibration & rotor critical speed in design, test and field applications. In 2014 IEEE Petroleum and Chemical Industry Technical Conference (PCIC) Conference : proceedings [online]. San Francisco, CA, USA, 2014, p. 227-236. Available from: https://doi.org/10.1109/PCICon.2014.6961887 Go to original source...
  3. YAMAZAKI, K., WATANABE, Y. Interbar current analysis of induction motors using 3-D finite-element method considering lamination of rotor core. IEEE Transactions on Magnetics [online]. 2006, 42(4), p. 1287-1290. ISSN 0018-9464. Available from: https://doi.org/10.1109/TMAG.2006.871423 Go to original source...
  4. FERKOVA, Z. Comparison of two-phase induction motor modeling in ANSYS Maxwell 2D and 3D program. In 10th International Conference ELEKTRO 2014 : proceedings. Zilina: Faculty of Electrical Engineering, 2014, p. 279-284. Go to original source...
  5. KALAMEN, L., et al. A novel method of magnetizing inductance investigation of self-excited induction generators. IEEE Transactions on Magnetics [online]. 2012, 48(4), p. 1657-1660. ISSN 0018-9464. Available from: https://doi.org/10.1109/TMAG.2011.2173312 Go to original source...
  6. PYRHONEN, J., et al. Harmonic loss calculation in rotor surface permanent magnets - New analytic approach. IEEE Transactions on Magnetics [online]. 2012, 48(8), p. 2358-2366. ISSN 0018-9464. Available from: https://doi.org/10.1109/TMAG.2012.2190518 Go to original source...
  7. MARQUES CARDOSO, A. J., et al. Rotor cage fault diagnosis in three-phase induction motors, by Park's vector approach. IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting : proceedings [online]. Vol. 1. Orlando, FL, USA, 1995, p. 642-646. ISBN 0-7803-3008-0/ISSN 0197-2618. Available from: https://doi.org/10.1109/IAS.1995.530360 Go to original source...
  8. BINDU, S., THOMAS, V. V. Diagnoses of internal faults of three phase squirrel cage induction motor - A review. In 2014 International Conference on Advances in Energy Conversion Technologies (ICAECT) : proceedings [online]. Manipal, India, 2014, p. 48-54. Available from: https://doi.org/10.1109/ICAECT.2014.6757060 Go to original source...
  9. NAHA, A., et al. A method for detecting half-broken rotor bar in lightly loaded induction motors using current. IEEE Transactions on Instrumentation and Measurement [online]. 2016, 65(7), p. 1614-1625. ISSN 0018-9456. Available from: https://doi.org/10.1109/TIM.2016.2540941 Go to original source...
  10. VALLES-NOVO, R., et al. Empirical mode decomposition analysis for broken-bar detection on squirrel cage induction motors. IEEE Transactions on Instrumentation and Measurement [online]. 2015, 64(5), p. 1118-1128. ISSN 0018-9456. Available from: https://doi.org/10.1109/TIM.2014.2373513 Go to original source...
  11. SOUALHI, A., CLERC, G., RAZIK, H. Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique. IEEE Transactions on Industrial Electronics [online]. 2013, 60(9), p. 4053-4062. ISSN 0278-0046/eISSN 1557-9948. Available from: https://doi.org/10.1109/TIE.2012.2230598 Go to original source...
  12. CEBAN, A., PUSCA, R., ROMARY, R. Study of rotor faults in induction motors using external magnetic field analysis. IEEE Transactions on Industrial Electronics [online]. 2012, 59(5), p. 2082-2093. ISSN 0278-0046/eISSN 1557-9948. Available from: https://doi.org/10.1109/TIE.2011.2163285 Go to original source...
  13. ROMERO-TRONCOSO, R. J., et al. FPGA-based online detection of multiple combined faults in induction motors through information entropy and fuzzy inference. IEEE Transactions on Industrial Electronics [online]. 2011, 58(11), p. 5263-5270. ISSN 0278-0046/eISSN 1557-9948. Available from: https://doi.org/10.1109/TIE.2011.2123858 Go to original source...
  14. KIA, S. H., HENAO, H., CAPOLINO, G. A. A high-resolution frequency estimation method for three-phase induction machine fault detection. IEEE Transactions on Industrial Electronics [online]. 2007, 54(4), p. 2305-2314. ISSN 0278-0046/eISSN 1557-9948. Available from: https://doi.org/10.1109/TIE.2007.899826 Go to original source...
  15. RANGEL-MAGDALENO, J. d. J., et al. Novel methodology for online half-broken-bar detection on induction motors. IEEE Transactions on Instrumentation and Measurement [online]. 2009, 58(5), p. 1690-1698. ISSN 0018-9456. Available from: https://doi.org/10.1109/TIM.2009.2012932 Go to original source...
  16. OJAGHI, M., NASIRI, S. Dynamic simulation of eccentric squirrel cage induction motors by including saturable reluctances of individual teeth. IET Electric Power Applications [online]. 2014, 8(6), p. 232-239. ISSN 1751-8660/eISSN 1751-8679. Available from: https://doi.org/10.1049/iet-epa.2013.0381 Go to original source...
  17. BERNAT, P., KACOR, P. Operational non-contact diagnostics of induction machine based on stray electromagnetic field. Communications - Scientific Letters of the University of Zilina [online]. 2015, 17(1A), p. 89-94. ISSN 1335-4205/eISSN 2585-7878. Available from: http://komunikacie.uniza.sk/index.php/communications/article/view/418 Go to original source...
  18. ORSAG, O., et al. Influence of rotor slot shape on the parameters of induction motor. IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe 2017) : proceedings [online]. Milan, Italy, 2017. ISBN 978-1-5386-3916-0. p. 1-6. Available from: https://doi.org/10.1109/EEEIC.2017.7977673 Go to original source...
  19. BANGURA, J. F., et al. Diagnostics of eccentricities and bar/end-ring connector breakages in polyphase induction motors through a combination of time-series data mining and time-stepping coupled FE-state-space techniques. IEEE Transactions on Industry Applications [online]. 2003, 39(4), p. 1005-1013. ISSN 0093-9994/eISSN 1939-9367. Available from: https://doi.org/10.1109/TIA.2003.814582 Go to original source...
  20. JOKSIMOVIC, G. M. Dynamic simulation of cage induction machine with air gap eccentricity. IEE Proceedings - Electric Power Applications [online]. 2005, 152(4), p. 803-811. ISSN 1350-2352/eISSN 1359-7043. Available from: https://doi.org/10.1049/ip-epa:20041229 Go to original source...
  21. SILWAL, P., et al. Numerical analysis of the power balance of an electrical machine with rotor eccentricity. IEEE Transactions on Magnetics [online]. 2016, 52(3), p. 1-4. ISSN 0018-9464. Available from: https://doi.org/10.1109/TMAG.2015.2477847 Go to original source...
  22. PYRHONEN, J., JOKINEN, T., HRABOVCOVA, V. Design of rotating electrical machines. Wiley, 2014. ISBN 978-1-118-58157-5
  23. OBAID, R. R., HABETLER, T. G., GRITTER, D. J. A simplified technique for detecting mechanical faults using stator current in small induction motors. 2000 IEEE Industry Applications Conference, Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy : conference record [online]. Vol. 1. Rome, Italy, 2000. ISBN 0-7803-6401-5/ISSN 0197-2618, p. 479-483. Available from: https://doi.org/10.1109/IAS.2000.881153 Go to original source...
  24. KOSTIC-PEROVIC, D., ARKAN, M., UNSWORTH, P. Induction motor fault detection by space vector angular fluctuation. 2000 IEEE Industry Applications Conference, Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy: conference record [online]. Vol. 1. Rome, Italy, 2000. ISBN 0-7803-6401-5/ISSN 0197-2618, p. 388-394. Available from: https://doi.org/10.1109/IAS.2000.881140 Go to original source...
  25. ELKASABGY, N. M., EASTHAM, A. R., DAWSON, G. E. Detection of broken bars in the cage rotor on an induction machine. IEEE Transactions on Industry Applications [online]. 1992, 28(1), p. 165-171. ISSN 0093-9994/eISSN 1939-9367. Available from: https://doi.org/10.1109/28.120226 Go to original source...
  26. CAMERON, J. R., THOMSON, W. T., DOW, A. B. Vibration and current monitoring for detecting airgap eccentricity in large induction motors. IEE Proceedings B - Electric Power Applications [online]. 1986, 133(3), p. 155-163. ISSN 0143-7038/eISSN 2053-7913. Available from: https://doi.org/10.1049/ip-b:19860022 Go to original source...
  27. DORRELL, D. G., THOMSON, W. T., ROACH, S. Analysis of airgap flux, current, and vibration signals as a function of the combination of static and dynamic airgap eccentricity in 3-phase induction motors. IEEE Transactions on Industry Applications [online]. 1997, 33(1), p. 24-34. ISSN 0093-9994/eISSN 1939-9367. Available from: https://doi.org/10.1109/28.567073 Go to original source...
  28. NANDI, S. AHMED, S., TOLIYAT, H. A. Detection of rotor slot and other eccentricity related harmonics in a three phase induction motor with different rotor cages. IEEE Transactions on Energy Conversion [online]. 2001, 16(3), p. 253-260. ISSN 0885-8969. Available from: https://doi.org/10.1109/60.937205 Go to original source...
  29. TOLIYAT, H. A., AREFEEN, M. S., PARLOS, A. G. A method for dynamic simulation of air-gap eccentricity in induction machines. IEEE Transactions on Industry Applications [online]. 1996, 32(4), p. 910-918. ISSN 0093-9994/eISSN 1939-9367. Available from: https://doi.org/10.1109/28.511649 Go to original source...
  30. CARDOSO, J. M., SARAIVA, E. S. Computer-aided detection of airgap eccentricity in operating three-phase induction motors by Park's vector approach. IEEE Transactions on Industry Applications [online]. 1993, 29(5), p. 897-901. ISSN 0093-9994/eISSN 1939-9367. Available from: https://doi.org/10.1109/28.245712 Go to original source...
  31. AL-NUAIM, N. A., TOLIYAT, H. A novel method for modeling dynamic air-gap eccentricity in synchronous machines based on modified winding function theory. IEEE Transactions on Energy Conversion [online]. 1998, 13(2), p. 156-162. ISSN 0885-8969. Available from: https://doi.org/10.1109/60.678979 Go to original source...
  32. BONNETT, A. H., SOUKUP, G. C. Analysis of rotor failures in squirrel-cage induction motors. IEEE Transactions on Industry Applications [online]. 1988, 24(6), p. 1124-1130. ISSN 0093-9994/eISSN 1939-9367. Available from: https://doi.org/10.1109/28.17488 Go to original source...
  33. BOGH, D., CROWELL, J., AMSTUTZ, R. IEEE 841 motor vibration. IEEE Industry Applications Magazine [online]. 2005, 11(6), p. 32-37. ISSN 1077-2618. Available from: https://doi.org/10.1109/MIA.2005.1524734 Go to original source...
  34. STACK, J. R., HABETLER, T. G., HARLEY, R. G. Effects of machine speed on the development and detection of rolling element bearing faults. IEEE Power Electronics Letters [online]. 2003, 1(1), p. 19-21. ISSN 1540-7985/eISSN 1558-3767. Available from: https://doi.org/10.1109/LPEL.2003.814607 Go to original source...
  35. BANGURA, J. F., et al. Diagnostics of eccentricities and bar/end-ring connector breakages in polyphase induction motors through a combination of time-series data mining and time-stepping coupled FE-state-space techniques. IEEE Transactions on Industry Applications [online]. 2003, 39(4), p. 1005-1013. ISSN 1077-2618. Available from: https://doi.org/10.1109/TIA.2003.814582 Go to original source...
  36. OBAID, R. R., HABETLER, T. G., GRITTER, D. J. A simplified technique for detecting mechanical faults using stator current in small induction motors. 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy : conference record [online]. Vol. 1. Rome, Italy, 2000. ISBN 0-7803-6401-5/ISSN 0197-2618, p. 479-483. Available from: https://doi.org/10.1109/IAS.2000.881153 Go to original source...
  37. DEN HARTOG, J. P. Advanced Strength of Materials. Dover Civil Mechanical Engineering, Dover Publications, 1987. ISBN 978-0486654072.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.