Communications - Scientific Letters of the University of Zilina 2019, 21(3):53-58 | DOI: 10.26552/com.C.2019.3.53-58

Optical Properties of Porous Silicon Solar Cells for Use in Transport

Martin Kralik1, Michaela Hola1, Stanislav Jurecka1
1 Institute of Aurel Stodola, Faculty of Electrical Engineering and Information Technology, University of Zilina, Liptovsky Mikulas, Slovak Republic

Porous silicon (pSi) samples were prepared by electrochemical etching of p-type silicon (p-type Si) substrate. Three pSi samples with different parameters of electrochemical etching (electrical potential, etching time, etching current) were prepared and analyzed. We studied the influence of electrochemical etching parameters on spectral reflectance of pSi structure. A modification of interference pattern was observed due to changes of microstructure. We determined the thickness of pSi layers from spectral reflectance. Solar cells with a porous structure achieve high efficiency and long life. These solar cells are predestined for use in transport.

Keywords: electrochemical etching; black silicon; porous silicon; spectral reflectance; thin film interference

Received: March 1, 2019; Accepted: May 6, 2019; Published: August 15, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kralik, M., Hola, M., & Jurecka, S. (2019). Optical Properties of Porous Silicon Solar Cells for Use in Transport. Communications - Scientific Letters of the University of Zilina21(3), 53-58. doi: 10.26552/com.C.2019.3.53-58
Download citation

References

  1. SAVIN, H., REPO, P., VON GUILLAUME, G., ORTEGA, P., CALLE, E., GARIN M., ALCUBILLA, R. Black silicon solar cells with interdigitated back-contacts achieve 22.1 % efficiency. Nature Nanotechnology [online]. 2015, 10, p. 624-628. ISSN 1748-3387, eISSN 1748-3395. Available from: https://doi.org/10.1038/nnano.2015.89 Go to original source...
  2. RAGHUNATHAN, D. Black silicon for higher efficiency in solar cells. Applied Mechanics and Materials [online]. 2015, 787, p. 92-96. ISSN 1662-7482. Available from: https://doi.org/10.4028/www.scientific.net/AMM.787.92 Go to original source...
  3. PLAKHOTNYUK, M., DAVIDSEN, R., S., SCHIMDT, M., S., MALUREANU, R., STAMATE, E., HANSEN, O. Lifetime of nano-structured black silicon for photovoltaic applications. 32nd European Photovoltaic Solar Energy Conference and Exhibition : proceedings. 2016. ISBN 978-1-5108-3651-8, p. 764-767.
  4. LOSIC, D., SANTOS, A. Electrochemically engineered nanoporous materials - methods, properties and applications. Springer, 2015. ISBN 978-3-319-20346-1. Go to original source...
  5. LEHMANN, V. Electrochemistry of silicon [online]. Wiley-VCH Verlag GmbH, 2002. ISBN 9783527293216, eISBN 9783527600274. Available from: https://doi.org/10.1002/3527600272 Go to original source...
  6. SAILOR, M. J. Porous silicon in practice, preparation, characterization and applications. Wiley-VCH Verlag GmbH, 2012. ISBN 978-3-527-31378-5.
  7. FRANSSILA, S. Introduction to microfabrication [online]. 2 ed. John Wiley & Sons, Ltd, 2010. ISBN 9780470749838, eISBN 9781119990413. Available from: https://doi.org/10.1002/9781119990413 Go to original source...
  8. ROORDA, A. Thin Film Interference. VS203B Lecture Notes, 2011.
  9. SERWAY, R., A., JEWETT, J., W. Physics for scientists and engineers. 6 ed. Belmont, CA, Thomson Brooks/Cole, 2004. ISBN 978-0534408466.
  10. HIND, A., R., CHOMETTE, L. The determination of thin film thickness using reflectance spectroscopy. Application note. Agilent Technologies Inc., SI-A-1205, 2011.
  11. FILMETRICS, Inc. Advanced thin-film measurement systems. Rev. 02.06, 2006.
  12. JURECKA, S., MULLEROVA, J., PINCIK, E. Optical methods for analysis of thin dielectric films. 19th International Conference on Applied Physics of Condensed Matter - APCOM 2013. 2013. ISBN 978-80-227-3956-6, p. 233-236.
  13. GOLDSTEIN, F. Film thickness of 'thick thin films' by spectroscopy. Society of Vacuum Coaters 1998 Meeting. Boston, MA, 1998.
  14. DIRDAL, CH. A., SKAAR, J.: Superpositions of Lorentzians as the class of causal functions. Physical Review A [online]. 2013, 88(3), 033834. ISSN 2469-9926, eISSN 2469-9934. Available from: https://doi.org/10.1103/PhysRevA.88.033834 Go to original source...
  15. Origin software: X-Function Register [online]. Avaliable from: https://www.originlab.com/doc/Origin-Help/Lorentz-FitFunc
  16. RAMIREZ-GUTIERREZ, C. F, CASTANO-YEPES, J. D., RODRIGUEZ-GARCIA, M. E. Porosity and roughness determination of porous silicon thin films by genetic algorithms. Optik - International Journal for Light and Electron Optics [online]. 2018, 173, p. 271-278. ISSN 0030-4026. Available from: https://doi.org/10.1016/j.ijleo.2018.08.019 Go to original source...
  17. SZE, S. M., KWOK, K. N. Physics of semiconductor devices. Hoboken, John Wiley & Sons, 2007. ISBN 978-0-471-14323-9.
  18. FODOR, B., AGOCS, E., BARDET, B., DEFFORGE, T., CAYREL, F., ALQUIER, D., FRIED, M., GAUTIER, G., PETRIK, P. Porosity and thickness characterization of porous Si and oxidized porous Si layers - an ultraviolet-visible-mid infrared ellipsometry study. Microporous and Mesoporous Materials [online]. 2016, 227, p. 112-120. ISSN 1387-1811. Available from: https://doi.org/10.1016/j.micromeso.2016.02.039 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.