Communications - Scientific Letters of the University of Zilina 2020, 22(1):15-24 | DOI: 10.26552/com.C.2020.1.15-24

Determining the Elements of Exterior Orientation in Aerial Triangulation Processing Using UAV Technology

Damian Wierzbicki1, Kamil Krasuski2
1 Institute of Geodesy, Faculty of Civil Engineering and Geodesy, Military University of Technology, Warszawa, Poland
2 Institute of Navigation, Military University of Aviation, Deblin, Poland

Unmanned Aerial Vehicles (UAVs) are still an interesting and current research topic in photogrammetry. An important issue in this area is determining the elements of exterior orientation of image data acquired at low altitudes. The article presents selected mathematical methods (TGC, TIC, TAD) of estimating elements of exterior orientation for image data obtained at low altitudes. The measurement data for the experimental test were recorded by the Unmanned Aerial Vehicle platform Trimble UX-5. In the framework of the test photogrammetric flight, the authors obtained 506 images and navigation data specifying the position and orientation of the Unmanned Aerial Vehicle. As a result of the research, it is proven possible to show the usefulness of the mathematical models (TGC, TIC, TAD) in estimation of elements of exterior orientation.

Keywords: GNSS; INS; UAV; digital aerial triangulation; elements of exterior orientation; aerial photogrammetry

Received: July 18, 2019; Accepted: September 24, 2019; Published: January 2, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Wierzbicki, D., & Krasuski, K. (2020). Determining the Elements of Exterior Orientation in Aerial Triangulation Processing Using UAV Technology. Communications - Scientific Letters of the University of Zilina22(1), 15-24. doi: 10.26552/com.C.2020.1.15-24
Download citation

References

  1. GINI, R., PAGLIARI, D., PASSONI, D., PINTO, L., SONA, G., DOSSO, P., BILL, R. UAV photogrammetry: block triangulation comparisons. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences [online]. 2013, XLI(W2), p. 157-162. ISSN 1682-1750, eISSN 2194-9034. Available from: https://doi.org/10.5194/isprsarchives-XL-1-W2-157-2013 Go to original source...
  2. COLOMINA, I., MOLINA, P. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing [online]. 2014, 92, p. 79-97. ISSN 0924-2716, eISSN 1872-8235. Available from: https://doi.org/10.1016/j.isprsjprs.2014.02.013 Go to original source...
  3. RIEKE, M., FOERSTER, T., GEIPEL, J., PRINZ, T. High-precision positioning and real-time data processing of UAV systems. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences [online]. 2011, 38(1/C22), p. 119-124. ISSN 1682-1750, eISSN 2194-9034. Available from: https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-119-2011 Go to original source...
  4. GASPAROVIC, M. JURJEVIC, L. Gimbal influence on the stability of exterior orientation parameters of UAV acquired images. Sensors [online]. 2017, 17(2), p. 401. eISSN 1424-8220. Available from: https://doi.org/10.3390/s17020401 Go to original source...
  5. JIANG, S., JIANG, W., On-board GNSS/IMU assisted feature extraction and matching for oblique UAV images. Remote Sensing [online]. 2017, 9, p. 813. eISSN 2072-4292. Available from: https://doi.org/10.3390/rs9080813 Go to original source...
  6. IZOLTOVA, J., PISCA, P., CERNOTA, P., MANCOVIC, M., Adjustment of code ranging of GNSS observations. Communications - Scientific Letters of the University of Zilina [online]. 2016, 18(4), p. 15-18. ISSN 1335-4205, eISSN 2585-7878. Available from: http://komunikacie.uniza.sk/index.php/communications/article/view/283 Go to original source...
  7. SUN, Y., SUN, H., YAN, L., FAN, S., CHEN, R., RBA: Reduced bundle adjustment for oblique aerial photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing [online]. 2016, 121, p. 128-142. ISSN 0924-2716, eISSN 1872-8235. Available from: https://doi.org/10.1016/j.isprsjprs.2016.09.005 Go to original source...
  8. SCHNEIDER, J., LABE, T., FORSTNER, W. Incremental real-time bundle adjustment for multi-camera systems with points at infinity. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences [online]. 2013, XLI(W2), p. 355-360. ISSN 1682-1750, eISSN 2194-9034. Available from: https://doi.org/10.5194/isprsarchives-XL-1-W2-355-2013 Go to original source...
  9. BLAZQUEZ, M., COLOMINA, I. Relative INS/GNSS aerial control in integrated sensor orientation: models and performance. ISPRS Journal of Photogrammetry and Remote Sensing [online]. 2012, 67, p. 120-133. ISSN 0924-2716, eISSN 1872-8235. Available from: https://doi.org/10.1016/j.isprsjprs.2011.11.003 Go to original source...
  10. WIERZBICKI, D. Determine the position and attitude of UAV in air navigation based on GNSS data. 22nd International Conference Scientific Transport Means: proceedings. 2018. ISSN 1822-296X, eISSN 2351-7034, p. 278-285.
  11. FORLANI, G., DIOTRI, F., MORRA DI CELLA, U., RONCELLA, R. Indirect UAV strip georeferencing by on-board GNSS data under poor satellite coverage. Remote Sensing [online]. 2019, 11(15), p. 1765. eISSN 2072-4292. Available from: https://doi.org/10.3390/rs11151765 Go to original source...
  12. WIERZBICKI, D. Determination of Shift/Bias in digital aerial triangulation of UAV imagery sequences. IOP Conference Series: Earth and Environmental Science [online]. 2017, 95, 032033. ISSN 1755-1307, eISSN 1755-1315. Available from: https://doi.org/10.1088/1755-1315/95/3/032033 Go to original source...
  13. WIERZBICKI, D. The prediction of position and orientation parameters of UAV for video imaging. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences [online]. 2017, XLII-2(W6). ISSN 1682-1750, eISSN 2194-9034. Available from: https://doi.org/10.5194/isprs-archives-XLII-2-W6-407-2017 Go to original source...
  14. WIERZBICKI, D., KRASUSKI, K. Determination the coordinates of the projection center in the digital aerial triangulation using data from unmanned aerial vehicle (in Polish). Aparatura Badawcza i Dydaktyczna. 2016, 21, p. 127-134. ISSN 1426-9600.
  15. BURKER, M., HEIMES, F. J. New calibration and computing method for direct georeferencing of image and scanner data using the position and angular data of a hybrid inertial navigation system. OEEPE-Workshop Integrated Sensor Orientation: proceedings. 2001.
  16. YI Z., JIANG, G., YANAN D. Speed-up matching method with navigation data for UAV remote sensing images of coastal region. Remote Sensing of the Environment: 19th National Symposium on Remote Sensing of China: proceedings. 2015.
  17. RABAH, M., BASIOUNY, M., GHANEM, E., ELHADARY, A. Using RTK and VRS in direct geo-referencing of the UAV imagery. NRIAG Journal of Astronomy and Geophysics [online]. 2018, 7(2), p. 220-226. eISSN 2090-9977. Available from: https://doi.org/10.1016/j.nrjag.2018.05.003 Go to original source...
  18. GRUEN, A. Adaptive least squares correlation: a powerful image matching technique. South African Journal of Photogrammetry Remote Sensing and Cartography. 1985, 14(3), p. 175-187. ISSN 0085-6398.
  19. WIERZBICKI, D. Estimation of angle elements of exterior orientation for UAV images based on ins data and aerial triangulation processing. 17th International Scientific Conference Engineering for Rural Development: proceedings [online]. 2018. ISSN 1691-5976, p. 1990-1996. Available from: https://doi.org/10.22616/ERDev2018.17.N054 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.