Communications - Scientific Letters of the University of Zilina 2020, 22(1):77-83 | DOI: 10.26552/com.C.2020.1.77-83

Basic Comparison And Evaluation Of Functionality AC-AC Matrix Converter Concepts For HEV Vehicle - Part I

Branislav Dobrucky1, Slavomir Kascak1, Michal Prazenica1, Roman Konarik1
1 Department of Mechatronics and Electronics, Faculty of Electrical Engineering and Information Technology, University of Zilina, Slovakia

The paper deals with the direct AC-AC propulsion system and compares two matrix converter concepts with fivephase traction induction motors (IM) for the hybrid electric vehicle (HEV) including electronic differential. The first one consists of [3x5] matrix converter and [3x1] active PWM rectifier (4Q-converter) for full power performance. The second one comprises one [3x5] matrix converter for full power and auxiliary [0x5] matrix converter for partial output power. Configurations of [3x5] + [0x5] MxC converters with five-phase motor(s) are not analyzed in available literature so far. The advantage of the proposed connection is in supposed higher efficiency of matrix converter then clasiccal VSI one. Part I deals with a theoretical study of converter concepts for hybrid electric vehicle. Based on simulation results the comparison and evaluation of the property and quality of the quantities of different type of the matrix powertrain are discussed in Part II.

Keywords: AC, AC powertrain; 3x5 matrix converter; 0x5 matrix converter; five-phase induction motor; electric drive; 4QC converter; modeling and simulation; HEV vehicle

Received: September 13, 2019; Accepted: October 3, 2019; Published: January 2, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Dobrucky, B., Kascak, S., Prazenica, M., & Konarik, R. (2020). Basic Comparison And Evaluation Of Functionality AC-AC Matrix Converter Concepts For HEV Vehicle - Part I. Communications - Scientific Letters of the University of Zilina22(1), 77-83. doi: 10.26552/com.C.2020.1.77-83
Download citation

References

  1. EHSANI, M., GAO, Y., EMADI, A. Modern electric, hybrid-and fuel cell vehicles. Boca Raton, USA: CRC Press, 2010. ISBN 9781420053982.
  2. LIVINT, G. H., HORGA, V, RATOI, M., ALBU, M. Control of hybrid electrical vehicles, electric vehicles - modelling and simulations. InTech, 2011. ISBN 978-953-307-477-1. Go to original source...
  3. PEREZ-PINAL, F. J., CERVANTES, I., EMADI, A. Stability of an electric differential for traction applications. IEEE Transactions on Vehicular Technology [online]. 2009, 58(7), p. 3224-3233. ISSN 0018-9545, eISSN 1939-9359. Available from: https://doi.org/10.1109/TVT.2009.2013473 Go to original source...
  4. HARTANI, K., BOURAHLA, M., MILOUD, Y., SEKOUR, M. Electronic differential with direct torque fuzzy control for vehicle propulsion system. Turkish Journal of Electrical Engineering Computer Sciences. 2009, 17(1), p. 21-38. ISSN 1303-6203. Go to original source...
  5. WHEELER, P. W., CLARE, J.C., EMPRINGHAM, L. A Vector controlled MCT matrix converter induction motor drive with minimized commutation times and enhanced waveform quality. IEEE Industry Applications Conference : proceedings [online]. 2002. ISBN 0-7803-7420-7, ISSN 0197-2618, p. 466-472. Available from: https://doi.org/10.1109/IAS.2002.1044127 Go to original source...
  6. DOBRUCKY, B., KASCAK, S., PRAZENICA, M., PAVLASEK, P. Direct AC-AC propulsion system using matrix converter and 5φ traction motor for HEV vehicle. Communications - Scientific Letters of the University of Zilina [online]. 2018, 20(1), p. 4-12. ISSN 1335-4205, eISSN 2585-7878. Available from: http://komunikacie.uniza.sk/index.php/communications/article/view/36 Go to original source...
  7. BEDNAR, B., DRABEK, P., PITTERMANN, M. Algorithm implementation of traction converter topology based on MFT and single-phase matrix converter. Electrical Engineering-Archiv fur Elektrotechnik [online]. 2017, 99(4), p. 1305-1315. ISSN 0003-9039, eISSN 0948-7921. Available from: https://doi.org/10.1007/s00202-017-0619-y Go to original source...
  8. REZAOUI, M. M., KOUZOU, A., MAHMOUDI, M. O., NEZLI, L. Comparison performances between two matrix converters [3x3] and [3x5] supplying a multi-phases induction machine. Journal of Electrical Engineering. 2016, 16(1), p. 217-227. ISSN 1582-4594.
  9. JONES, M., LEVI, E., VUKOSAVIC, S. N. Independent control of two five-phase induction machines connected in parallel to a single inverter supply. 32nd Annual Conference on IEEE Industrial Electronics IECON 2006 : proceedings [online]. IEEE, 2006. eISBN 978-1-5090-9155-3, ISSN 1553-572X, p. 1257-1262. Available from: https://doi.org/10.1109/IECON.2006.348152 Go to original source...
  10. CHOMAT, M., SCHREIER, L., BENDL, L. Effect of stator winding configuration on operation of convertor fed five-phase induction machine. 18th International Conference on Electrical Drives and Power Electronics EDPE : proceedings [online]. IEEE, 2015. eISSN 1339-3944, p. 488-496. Available from: https://doi.org/10.1109/EDPE.2015.7325343 Go to original source...
  11. BERNET, S., PONNALURI, S., TEICHMANN, R. Design and loss comparison of matrix converters, and voltage-source converters for modern AC drives. IEEE Transactions on Industrial Electronics [online]. 2002, 49(2), p. 304-314. ISSN 0278-0046, eISSN 1557-9948. Available from: https://doi.org/10.1109/41.993263 Go to original source...
  12. KIMURA, Y., HIZUME, M., MATSUSE, K. Independent vector control of two PM motors with five-leg inverter by the expanded two-arm modulation method. 2005 European Conference on Power Electronics and Applications : proceedings [online]. IEEE, 2005. ISBN 90-75815-09-3, p 1-7. Available from: https://doi.org/10.1109/EPE.2005.219400 Go to original source...
  13. LIM, C. S., RAHIM, N. A., HEW, W. P., LEVI, E. Model predictive control of a two-motor drive with five-leg-inverter supply. IEEE Transactions on Industrial Electronics [online]. 2013, 60(1), p. 54-65. ISSN 0278-0046, eISSN 1557-9948. Available from: https://doi.org/10.1109/TIE.2012.2186770 Go to original source...
  14. ZASKALICKY, P. Mathematical model of a five-phase voltage-source PWM controlled inverter. Electrical Engineering-Archiv fur Elektrotechnik [online]. 2017, 99(4), p. 1179-1184. ISSN 0003-9039, eISSN 0948-7921. Available from: https://doi.org/10.1007/s00202-017-0643-y Go to original source...
  15. SCHREIER, L., BENDL, J., CHOMAT, M. Operation of five-phase induction motor after loss of one phase of feeding source. Electrical Engineering-Archiv fur Elektrotechnik [online]. 2017, 99(1), p. 9-18. ISSN 0003-9039, eISSN 0948-7921. Available from: https://doi.org/10.1007/s00202-016-0370-9 Go to original source...
  16. ZHUANG, X. An indirect space-vector modulated three-phase AC-DC matrix converter for hybrid electric vehicles. Energy Procedia [online]. 2015, 75(4), p. 1968-1974. eISSN 1876-6102. Available from: https://doi.org/10.1016/j.egypro.2015.07.242 Go to original source...
  17. BAK, Y., LEE, E., LEE, K.-B. Indirect matrix converter for hybrid electric vehicle application with three-phase and single-phase outputs. Energies [online]. 2015, 8(5), p. 3849-3866. eISSN 1996-1073. Available from: https://doi.org/10.3390/en8053849 Go to original source...
  18. DOBRUCKY, B., KASCAK, S., PRAZENICA, M., DRGONA, P., PAVLASEK, P. AC/AC powertrain control under different HEV supply network. 2018 ELEKTRO : proceedings [online]. IEEE, 2018. p. 2811-2823. Available from: https://doi.org/10.1109/ELEKTRO.2018.8398272 Go to original source...
  19. DOBRUCKY, B., KASCAK, S., PRAZENICA, M., JARABICOVA, M. Improving efficiency of hybrid electric vehicle using matrix converters. Elektronika ir Elektrotechnika [online]. 2019, 25(4), p. 29-35. ISSN 1392-1215, eISSN 2029-5731 Available from: https://doi.org/10.5755/j01.eie.25.4.23967 Go to original source...
  20. BAUER, J., FLIGL, S., STEIMEL, A. Design and dimensioning of essential passive components for the matrix converter prototype. Automatika [online]. 2012, 53(3), p. 225-235. ISSN 0005-1144, eISSN 1848-3380. Available from: https://doi.org/10.7305/automatika.53-3.134 Go to original source...
  21. TRENTIN, A., ZANCHETTA, P., CLARE, J., WHEELER, P. Automated optimal design of input filters for direct AC/AC matrix converters. IEEE Transactions on Industrial Electronics [online]. 2012, 59(7), p. 2811-2823. ISSN 0278-0046, eISSN 1557-9948. Available from: https://doi.org/10.1109/TIE.2011.2163283 Go to original source...
  22. LINDGREN, M., SVENSSON, J. Control of a voltage-source converter connected to the grid through an LCL filter - application to active filtering. PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196) : proceedings [online]. IEEE, 1998. ISBN 0-7803-4489-8, ISSN 0275-9306, p. 229-235. Available from: https://doi.org/10.1109/PESC.1998.701904 Go to original source...
  23. LISERRE, M., BLAABJERG, F., HANSEN, S. Design and control of an LCL-filter-based three-phase active rectifier. IEEE Transactions on Industry Applications [online]. 2005, 41(5), p. 1281-1291. ISSN 0093-9994, eISSN 1939-9367. Available from: https://doi.org/10.1109/TIA.2005.853373 Go to original source...
  24. JUSSILA, M., TUUSA, H. Comparison of direct and indirect matrix converters in induction motor drive. 32nd Annual Conference of the IEEE Industrial Electronics Society IECON'06 " proceedings [online]. IEEE, 2006. eISBN 978-1-5090-9155-3, ISSN 1553-572X, p. 1621-1626. Available from: https://doi.org/10.1109/IECON.2006.347423 Go to original source...
  25. NOBILE, G., CACCIATO, M., SCARCELLA, G., SCELBA, G. Multi-criteria experimental comparison of batteries circuital models for automotive applications. Communications - Scientific Letters of the University of Zilina [online]. 2018, 20(1), p. 97-104. ISSN 1335-4205, eISSN 2585-7878. Available from: http://komunikacie.uniza.sk/index.php/communications/article/view/54 Go to original source...
  26. HUSAIN, I. Electric and hybrid vehicles - design fundamentals. 2. ed. CRC Press, 2011. ISBN 978143981175.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.