Communications - Scientific Letters of the University of Zilina 2020, 22(1):95-101 | DOI: 10.26552/com.C.2020.1.95-101

The System of Facial Recognition in the Infrared Range

Daniil A. Loktev1, Alexey A. Loktev2, Alexandra V. Salnikova3
1 Department of Information Systems and Telecommunications, Bauman Moscow State Technical University, Russia
2 Department of Transport Construction, Russian University of Transport (MIIT), Moscow, Russia
3 International Laboratory of Statistics of Stochastic Processes and Quantitative Finance, National Research Tomsk State University, Russia and Department of Building Engineering and Urban Planning, University of Zilina, Zilina, Slovak Republic

In this paper, a new approach is introduced upgrading the complex object recognizing monitoring system up to the image processing system capable of operating both in the visible and the infrared wavelength ranges. For this purpose, both new algorithmic software and user interface are provided that require from the operator neither special knowledge, nor specific competencies in the fields of object detection, tracking and recognition, while allowing determining the thermal imager parameters necessary for constructing a high-quality image of an object. There are formulated the conditions required for obtaining such image that, by its quality, would make the satisfactory detection of the desired object possible. By means of the conducted tests, it is demonstrated that the application of the proposed mathematical and algorithmic support of the complex monitoring and control system provides the solution for the problem of the highly accurate individual recognition.

Keywords: object image; background image; cascade classifier; thermal imager; object contour; background subtraction

Received: June 28, 2019; Accepted: August 2, 2019; Published: January 2, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Loktev, D.A., Loktev, A.A., & Salnikova, A.V. (2020). The System of Facial Recognition in the Infrared Range. Communications - Scientific Letters of the University of Zilina22(1), 95-101. doi: 10.26552/com.C.2020.1.95-101
Download citation

References

  1. GRYAZNOV, N., LOPOTA, A. Computer vision for mobile on-ground robotics. Procedia Engineering [online]. 2015, 100, p. 1376-1380. ISSN 1877-7058. Available from: https://doi.org/10.1016/j.proeng.2015.01.506 Go to original source...
  2. LOKTEV, D. A. Determination of object parameters by a series of its images in the integrated monitoring system (in Russian). Path and Track Facilities. 2015, 2, p. 31-33. ISSN 0131-5765.
  3. SUN, Z., BEBIS, G., MILLER, R. On-road vehicle detection using optical sensors: a review. 7th International IEEE Conference on Intelligent Transportation Systems : proceedings [online]. 2004. ISBN 0-7803-8500-4. Available from: https://doi.org/10.1109/ITSC.2004.1398966 Go to original source...
  4. COLLINS, R., LIPTON, A., KANADE, T. A system for video surveillance and monitoring. Technical Report CMU-RI-TR-00-12. Pittsburgh: The Robotics Institute, Carnegie Mellon University, 1999. Available from: https://www.ri.cmu.edu/pub_files/pub2/collins_robert_2000_1/collins_robert_2000_1.pdf
  5. LOKTEV, D. A., LOKTEV, A. A., SALNIKOVA, A. V., SHAFOROSTOVA, A. A. Determination of the dynamic vehicle model parameters by means of computer vision. Communications - Scientific Letters of the University of Zilina [online]. 2019, 21(3), p. 5-11. ISSN 1335-4205, eISSN 2585-7878. Available from: http://komunikacie.uniza.sk/index.php/communications/article/view/93 Go to original source...
  6. HAHNE, U. Real-time depth imaging [online]. Ph.D. Thesis. Berlin: Technische Universitat Berlin, 2012. Available from: https://d-nb.info/1023762218/34
  7. LINDNER, M., KOLB, A. Calibration of the intensity-related distance error of the PMD TOF-camera. SPIE - The International Society for Optical Engineering : proceedings [online]. 2007. ISBN 978-0-8194-6924-3. Available from: https://doi.org/10.1117/12.752808 Go to original source...
  8. GIL, P., POMARES, J., TORRES, F. Analysis and adaptation of integration time in PMD camera for visual serving. 20th International Conference on Pattern Recognition : proceedings [online]. 2010. ISSN 1051-4651. Available from: https://doi.org/10.1109/ICPR.2010.85 Go to original source...
  9. MULJOWIDODO, K., RASYID, M. A., SAPTO, A. N., BUDIYONO, A. Vision based distance measurement system using single laser pointer design for underwater vehicle. Indian Journal of Marine Sciences [online]. 2019, 38(3), p. 324-331. ISSN 0379-5136. Available from: http://nopr.niscair.res.in/bitstream/123456789/6209/1/IJMS 38(3) 324-331.pdf
  10. DESCHENES, F., ZIOU, D., FUCHS, P. Enhanced depth from defocus estimation: tolerance to spatial displacements. Technical Report No. 256. Quebec: Universite de Sherbrooke, 2000.
  11. ALFIMTSEV, A. N., SAKULIN, S. A., LOKTEV, D. A., KOVALENKO, A. O., DEVYATKOV, V. V. Hostis humani ET mashinae: adversarial camouflage generation. Journal of Advanced Research in Dynamical and Control Systems [online]. 2019, 11(2), p. 382-392. ISSN 1943-023X. Available from: http://jardcs.org/abstract.php?id=320
  12. HU, H., HAAN, G. Low cost robust blur estimator. IEEE International Conference on Image Processing : proceedings [online]. 2006. ISBN 978-1-4244-0481-0. Available from: https://doi.org/10.1109/ICIP.2006.312411 Go to original source...
  13. Zaman, T. Depth estimation from blur estimation. Delft: Delft University of Technology, 2012. Available from: https://pdfs.semanticscholar.org/dbf5/e58c54fe68591bf749d22b5ac002ca8cfe38.pdf
  14. LIN, H.-Y., CHANG, C.-H. Depth from motion and defocus blur. Optical Engineering [online]. 2006, 45(12), p. 127201-1-127201-12. ISSN 0091-3286, eISSN 1560-2303. Available from: https://doi.org/10.1117/1.2403851 Go to original source...
  15. BORACHI, G., CAGLIOTI, V. Motion blur estimation at corners. 3rd International Conference on Computer Vision Theory and Applications : proceedings. 2008. ISBN 978-989-8111-21-0.
  16. SCHAPIRE, R. E., FREUND, Y. Boosting: foundations and algorithms. Massachusetts: MIT Press, 2012. ISBN 978-0-2620-1718-3. Go to original source...
  17. BOURLAI, T., MAVRIDIS, N., NARANG, N. On designing practical long range near infrared-based face recognition systems. Image and Vision Computing [online]. 2016, 52, p. 25-41. ISSN 0091-3286. Available from: https://doi.org/10.1016/j.imavis.2016.04.013 Go to original source...
  18. CHANG, H., HARIHARAN, H., YI, M., KOSCHAN, A., ABIDI, B., ABIDI, M. An indoor and outdoor, multimodal, multispectral and multi-illuminant database for face recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition : proceedings [online]. 2006. ISBN 978-0-7695-2646-1. Available from: https://doi.org/10.1109/CVPRW.2006.28 Go to original source...
  19. ROSSIKHIN, YU. A., SHITIKOVA, M. V., LOKTEV, A. A. The analysis of thin-walled building structures subjected to impact excitation. 4th International Ph.D. Symposium in Civil Engineering : proceedings [online]. 2002. Available from: https://doi.org/10.1002/stab.200201020 Go to original source...
  20. CHERNOYAROV, O. V., BREZNAN, M., TEREKHOV, A. V., Restoration of deterministic and interference distorted signals and images with use of the generalized spectra based on orthogonal polynomials and functions. Communications - Scientific Letters of the University of Zilina [online]. 2013, 15(2A), p. 71-77. ISSN 1335-4205, eISSN 2585-7878. Available from: http://komunikacie.uniza.sk/index.php/communications/article/view/34 Go to original source...
  21. LOKTEV, A. A., BAKHTIN, V. F., CHERNIKOV, I. YU., LOKTEV, D. A. Method of determining external defects of a structure by analyzing a series of its images in the monitoring system (in Russian). Vestnik MGSU. 2015, 3, p. 7-16. ISSN 1997-0935, eISSN 2304-6600. Go to original source...
  22. LOKTEV, D. A., LOKTEV, A. A. Determination of object location by analyzing the image blur. Contemporary Engineering Sciences [online]. 2015, 8(9), p. 467-475. ISSN 1313-6569, eISSN 1314-7641. Available from: http://dx.doi.org/10.12988/ces.2015.52198 Go to original source...
  23. ALFIMTSEV, A. N., LOKTEV, D. A., LOKTEV, A. A. Comparison of methodologies for developing systems of intellectual interaction (in Russian). Vestnik MGSU. 2013, 5, p. 200-208. ISSN 1997-0935, eISSN 2304-6600. Go to original source...
  24. CHERNOYAROV, O. V., KUTOYANTS, Y. A., MARCOKOVA, M. On frequency estimation for partially observed system with small noises in state and observation equations. Communications - Scientific Letters of the University of Zilina [online]. 2018, 20(1), p. 67-72. ISSN 1335-4205, eISSN 2585-7878. Available from: http://komunikacie.uniza.sk/index.php/communications/article/view/48 Go to original source...
  25. DRAKOPOULOS, V. Fractal-based image encoding and compression techniques. Communications - Scientific Letters of the University of Zilina [online]. 2013, 15(3), p. 48-55. ISSN 1335-4205, eISSN 2585-7878. Available from: http://komunikacie.uniza.sk/index.php/communications/article/view/687 Go to original source...
  26. LOKTEV, D. A., LOKTEV, A. A. Development of a user interface for an integrated system of video monitoring based on ontologies. Contemporary Engineering Sciences [online]. 2015, 8(20), p. 789-797. ISSN 1313-6569, eISSN 1314-7641. Available from: http://dx.doi.org/10.12988/ces.2015.57196 Go to original source...
  27. LOKTEV, A. A., IZOTOV, K. A., LOKTEV, D. A. The possibility of increasing the bandwidth of fiber-optic communication lines. Moscow Workshop on Electronic and Networking Technologies (MWENT) : proceedings [online]. 2018. ISBN 978-1-5386-3497-4. Available from: https://doi.org/10.1109/MWENT.2018.8337243 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.