Communications - Scientific Letters of the University of Zilina 2020, 22(2):52-59 | DOI: 10.26552/com.C.2020.2.52-59

Methods of Predicting the Heading, Pitch and Roll Angles for an Unmanned Aerial Vehicle

Damian Wierzbicki1, Kamil Krasuski2
1 Institute of Geospatial Engineering and Geodesy, Faculty of Civil Engineering and Geodesy, Military University of Technology, Warsaw, Poland
2 Institute of Navigation, Military University of Aviation, Deblin, Poland

The article discusses handicaps in predicting values of rotation angles with regard to Heading, Pitch and Roll for an Unmanned Aerial Vehicle. Within the simulation of the rotation angle values, the linear, polynomial and logarithmic methods were used. The programme source code was written in the numerical editor Scilab 5.4.1. The source data for investigation were recorded by a measuring device Trimble UX-5. The article provides results of comparing the real values of Heading, Pitch and Roll rotation angles to findings obtained from the prediction methods. Based on the conducted research, it was found that the largest value of standard deviation parameter in prediction of the rotation angles is for the angle of Heading, as it equals approximately 5o, whereas the smallest ones are for the Roll and Pitch angles, equalling less than 1.4o.

Keywords: UAV; prediction; heading; pitch; roll

Received: July 18, 2019; Accepted: November 18, 2019; Published: April 1, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Wierzbicki, D., & Krasuski, K. (2020). Methods of Predicting the Heading, Pitch and Roll Angles for an Unmanned Aerial Vehicle. Communications - Scientific Letters of the University of Zilina22(2), 52-59. doi: 10.26552/com.C.2020.2.52-59
Download citation

References

  1. IZVOLTOVA, J., PISCA, P., CERNOTA, P., MANCOVIC, M. Adjustment of Code Ranging of GNSS Observations. Communications - Scientific Letters of the University of Zilina [online]. 2016, 18(4), p. 15-18. ISSN 1335-420, eISSN 2585-7878. Available from: http://komunikacie.uniza.sk/index.php/communications/article/view/283 Go to original source...
  2. KEDZIERSKI, M., FRYSKOWSKA, A., WIERZBICKI, D. Opracowania fotogrametryczne z niskiego pulapu / Photogrammetric studies from low altitude (in Polish). Warsaw: Wydawnictwo Wojskowa Akademia Techniczna, 2014. ISBN 978-83-7938-047-3
  3. JAFERNIK, H., KRASUSKI, K., MICHTA, J. Assessment of suitability of radionavigation devices used in air. Scientific Journal of Silesian University of Technology. Series Transport [online]. 2016, 90, p. 99-112. ISSN 0209-3324, eISSN 2450-1549. Available from: https://doi.org/10.20858/sjsutst.2016.90.9 Go to original source...
  4. GRYGIEL, R., BIEDA, R., WOJCIECHOWSKI, K. Metody wyznaczania katow z zyroskopow dla filtru komplementarnego na potrzeby okreslania orientacji IMU / Angles from gyroscope to complementary filter in IMU (in Polish). Przeglad Elektrotechniczny [online]. 2014, 90(9), p. 217-224. ISSN 0033-209, eISSN 2449-9544. Available from: https://doi.org/10.12915/pe.2014.09.52
  5. SCHNEIDER, A., HOMMEL, G., BLETTNER, M. Linear regression analysis: part 14 of a series on evaluation of scientific publications. Deutsches Arzteblatt International [online]. 2010, 107(44), p. 776-782. eISSN 1866-0452. Available from: https://doi.org/10.3238/arztebl.2010.0776 Go to original source...
  6. CHEN, Y., XIE Z. Research on the trajectory model for ZY-3. The Scientific World Journal [online]. 2014, ID 429041. ISSN 2356-6140, eISSN 1537-744X. Available from: https://doi.org/10.1155/2014/429041 Go to original source...
  7. SALAS, A. H. The logarithmic function as a limit. Applied Mathematical Sciences. 2012, 6(91), p. 4511 - 4518. ISSN 1312-885X, eISSN 1314-7552.
  8. OSADA, E. Geodezja / Geodesy (in Polish). Wroclaw: Oficyna Wydawnicza Politechniki Wroclawskiej, 2001. ISBN 83-7085-663-2.
  9. WIERZBICKI, D., KRASUSKI, K. Estimation of rotation angles based on GPS data from UX5 platform. Measurement Automation Monitoring. 2015, 61(11), p. 516-520. ISSN 2450-2855.
  10. WIERZBICKI, D. The prediction of position and orientation parameters of UAV for video imaging. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences [online]. 2017, XLII-2/W6, p. 407-413. eISSN 2194-9034. Available from: https://doi.org/10.5194/isprs-archives-XLII-2-W6-407-2017 Go to original source...
  11. ZOUAOUI, S., MOHAMED, E., KOUIDER, B. Easy tracking of UAV using PID controller. Periodica Polytechnica Transportation Engineering [online]. 2019, 47(3), p. 171-177. ISSN 0303-7800, eISSN 1587-3811. Available from: https://doi.org/10.3311/PPtr.10838 Go to original source...
  12. GRUJIC, I., NILSSON, R. Model-based development and evaluation of control for complex multi-domain systems: attitude control for a quadrotor UAV. Technical report ECE-TR-23. Aarhus, Denmark: Aarhus University, Department of Engineering, 2016.
  13. RAEMAEKERS, A. J. M. Design of a model predictive controller to control UAVs [online]. DCT rapporten; vol. 2007.141. Eindhoven: Technische Universiteit Eindhoven, 2007. Available from: https://pure.tue.nl/ws/portalfiles/portal/4337910/657983.pdf
  14. LOPES, H. J. D. Attitude determination of highly dynamic fixed-wing UAVs [online]. Msc Thesis. Lisbon, Portugal: Instituto Superior T'ecnico, 2011. Available from: https://fenix.tecnico.ulisboa.pt/downloadFile/395143092026/dissertacao.pdf Go to original source...
  15. KOK, M., HOL, J. D., SCHON T. B. Using inertial sensors for position and orientation estimation [online]. In: Foundations and trends in signal processing. 2017, 11(1-2), p. 1-153. ISBN 9781680833560. Available from: http://dx.doi.org/10.1561/2000000094 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.